Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
4. ОПТИКА кристаллов.doc
Скачиваний:
14
Добавлен:
30.07.2019
Размер:
491.01 Кб
Скачать

Логарифмическая шкала

Рис. 7.1 Длины волн спектра электромагнитного излучения.

Рис. 7.2 Понятия, используемые при описании волнового движения.

длиной волны, хотя по существу он зависит от частоты. При прохождении света через окрашенные вещества одни его частоты поглощаются сильнее, чем другие. Поэтому та часть спектра, которая выходит из вещества, характеризуется иным распределением частот, чем у белого света, что приводит к появлению окраски у прошедшего через вещество света.

7.1.1 Описание волнового движения

Рассмотрим движение отдельной частицы, участвующей в распространении волны. На проходимом ею пути О АО АО частица будет последовательно занимать положения от О до 8 (рис. 7.3). Скорость частицы будет максимальной в точке О и упадет до нуля в точках A и A, где направление ее движения меняется на обратное. Скорость частицы можно рассматривать как постоянную, если представить себе, что частица движется по кругу, ориентированному перпендикулярно к направлению распространения волны. Радиус этого круга, который мы будем называть фазовым, кругом, является амплитудой волны.

Если скорость перемещения частицы по кругу равна a радиан в секунду, то угол, соответствующий дуге, пройденной ею За интервал времени t, являющийся частью периода волны T, составит at. Этот угол называется фазовым углом. Полное колебание частица совершает за период волны T, и радиус фазового круга перемещается за это время на угол 2p радиан.

Частота, амплитуда, интенсивность и энергия

Излучение несет с собой энергию. Количество энергии на единицу объема, умноженное на скорость, дает величину потока энергии, проходящего за секунду через единицу площади, и этот поток энергии называется интенсивностью излучения. Между частотой (и длиной волны) волнового движения и энергией излучения существует определенная зависимость: энергия возрастает пропорционально квадрату частоты. Чем больше частота (и, следовательно, чем меньше длина волны в данной среде), тем выше поток энергии, т.е. интенсивность излучения.

Положения векторов

Время

Рис 7.4 Сложение волн

Интенсивность излучения любой данной частоты изменяется как квадрат амплитуды. Другими словами, энергия смещения частицы при волновом движении пропорциональна квадрату расстояния, на которое она смещается.

7.1.2 Сложение волн

Если две волны распространяются в одном направлении за счет колебания частиц, движущихся в одной и той же плоскости, их воздействие на колебание отдельной частицы определяется алгебраическим сложением, при котором подъем волны считается положительным, а спад — отрицательным. На рис. 7.4,а показаны две волны с одинаковой частотой, колебания у которых происходят в фазе, т. е. их максимумы наступают в одно время и складываются, как сказано выше. Они взаимно усиливают друг друга, что приводит к возрастанию амплитуды, а следовательно, и к большей интенсивности. На рис. 7.4, б изображены две волны, сдвинутые по фазе на половину их длины. Другими словами, исходя из рассмотренной схемы фазового круга они различаются по фазе на 180° радиан). При взаимодействии эти волны интерферируют, ослабляя друг друга, но поскольку их амплитуды равны, никакого результирующего движения частицы не возникает и волны гасятся. На рис. 7.4, в две волны сдвинуты по фазе на произвольно выбранную величину. Амплитуда результирующей волны отличается от тех, которые участвовали в формировании колебательного движения.

Сложение волн представляют графически в виде фазовых кругов, на которых амплитуды и разности фаз изображаются в масштабе радиусов соответствующей длины, отстоящих друг от друга на расстояние заданных фазовых углов. Амплитуду и фазу результирующей волны находят путем векторного сложения с применением хорошо известного правила параллелограмма, согласно которому равнодействующая двух сил определяется графически по их индивидуальным векторам, как если бы эти силы действовали последовательно.