Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
4. ОПТИКА кристаллов.doc
Скачиваний:
14
Добавлен:
30.07.2019
Размер:
491.01 Кб
Скачать

7.6.1 Поляризация при отражении

Как уже говорилось ранее (разд. 7.3.2), при падении света на границу раздела сред с различными показателями преломления одна его часть пересекает эту границу, преломляясь в новую среду, а другая отражается. Отраженный свет частично поляризуется таким образом, что большая часть его колебаний лежит в плоскости, нормальной к той, в которой находится падающий луч и перпендикуляр к отражающей поверхности. (Плоскость, содержащая падающий луч и нормаль к границе раздела сред, называется плоскостью падения.) Пересекая границу сред, преломленный свет поляризуется таким образом, что начинает колебаться под прямым углом к направлению колебаний отраженного света (рис. 7.20). Отраженный луч оказывается поляризованным не полностью, но максимальная степень его поляризации наблюдается тогда, когда угол между ним и преломленным лучом составляет 90°. Это соотношение называется законом Брюстера. Угол падения, соответствующий максимуму поляризации, определяется соот-

ношением показателей преломления двух граничащих сред. Если на рис. 7.20, б угол BOC — 90°, то угол r является дополнительным к углу г. Следовательно, sin //sin r = sin //cos i = tg i. Поэтому если среда с меньшей плотностью представлена воздухом, максимальная поляризация наблюдается в том случае, когда тангенс угла падения равен показателю преломления отражающей среды.

Поляризацию при отражении можно использовать для формирования пучка поляризованного света в процессе его прохождения через ряд стеклянных пластинок, причем на каждой границе между пластинками теряется отраженная составляющая света. Однако этот метод в настоящее время почти не используется.

7.6.2 Поляризация при двупреломлении

В старых поляризационных микроскопах для получения поляризованного света использовали дву-преломляюшие свойства кальцита, о которых говорилось выше. Применяемое для этого соответствующее устройство называется призмой Николя или просто николем.

Призматический спайный выколок кальцита распиливается через центр по диагонали, и образовавшиеся его части снова склеиваются канадским бальзамом (рис. 7.21). Края призмы шлифуют, а затем полируют так, чтобы диагональный срез приобрел определенные углы. Эти углы должны быть такими, чтобы при возникновении двупреломления (когда свет попадает на край призмы) обыкновенный луч (п = 1,658) подходил к слою канадского бальзама (п — 1,54) под углом, большим предельного (разд. 7.4.1). В этом случае о-луч будет испытывать полное внутреннее отражение и поглощаться черной оправой призмы. Необыкновенный луч (n = 1,516) сможет пройти, преломляясь, через бальзам и выйти из призмы. При этом он становится полностью поляризованным, что подтверждается простым опытом, рассмотренным ниже (разд. 7.6.4).

7.6.3 Поляризация при поглощении

Некоторые природные вещества проявляют заметное различие в поглощении света, колеблющегося по разным направлениям при прохождении через кристалл. Например, в дравите и других ми-

34J"

Рис. 7.21 Призма Николя.

нералах группы турмалина Na(Mg,Fe)3Al6(BO3)3 (Si6O18)(OH)4 лучи с колебаниями, параллельными удлинению кристалла, поглощаются в значительно меньшей степени, чем лучи с колебаниями в поперечном направлении. В результате этого мы наблюдаем явление, называемое дихроизмом, суть которого состоит в изменении окраски кристаллов в зависимости от двух указанных направлений колебаний света. В турмалинах данное свойство объясняется атомной структурой, определяемой кольцами Si6O18 и треугольными группами ВО3- Содержащие их плоскости перпендикулярны кристаллографической оси z, являющейся тройной осью. Когда электрический вектор света колеблется перпендикулярно оси z и параллельно плоскостям расположения упомянутых структурных групп, он интенсивно взаимодействует с ними и в результате в значительной степени поглощается. Если же электрический вектор колеблется параллельно оси z, большая часть длин волн свободно проходит через кристалл.

Минералоги используют это свойство кристаллов уже в течение многих лет, применяя турмалиновые клинья для грубой оценки двупреломления.

Две пластинки турмалина выпиливаются параллельно оси z, и из каждой изготавливают клин. Пластинки соединяют таким образом, чтобы их оси z взаимно пересекались в вершинах клиньев. После прохождения через первую пластинку свет начинает колебаться в направлении, в котором будет сильно поглощаться другой пластинкой. Поэтому свет не может выйти из этой пары турмалиновых пластинок, пока между ними не будет помещен какой-нибудь двупреломляющий кристалл, создающий новые направления колебаний света прежде, чем он достигнет второй пластинки.

Основываясь на этом принципе и использовав свойства только что открытых пластиковых пленок, Э. Лэнд в 1928 г. изобрел поляризующую пластинку, которая в более совершенной форме повсеместно используется в настоящее время для формирования поляризованного света в микроскопах. В ранних образцах поляроидов, как стали называть такие пластинки, в пластиковую пленку помещалось большое количество тончайших игольчатых кристалликов органических солей йодисто-водородной кислоты, обладающих сильно выраженным дихроизмом. Затем пленка туго натягивалась и иголки кристаллов принимали параллельную ориентацию. Свет, совершающий в этом случае колебания параллельно удлинению кристалликов, поглощается настолько сильно, что практически совсем не выходит из пленки. Другие лучи, у которых колебания перпендикулярны удлинению кристалликов, проходят через пленку свободно, давая плоскополяризованный свет. В последних типах поляроидов для получения того же результата используются соединения иода или других окрашенных веществ и пластик, сложенный удлиненными и параллельно расположенными молекулами.