Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции (Статистика).doc
Скачиваний:
30
Добавлен:
07.05.2019
Размер:
1.66 Mб
Скачать

2. Непрерывные случайные величины

В случае непрерывного распределения, вероятности отдельных возможных значений равны нулю. Поэтому весь интервал возможных значений делят на k непересекающихся интервалов и вычисляют вероятности Pi попадания случайной величины X в i-ый частичный интервал, а затем, как и для дискретного распределения, умножают число испытаний на эти вероятности, т.е.

,

где n – объем выборки;

Pi – вероятность попадания случайной величины Х в i-ый частичный интервал, вычисленная при допущении, что Х имеет предполагаемое распределение.

К примеру, если имеются основания предположить, что случайная величина Х (генеральная совокупность) подчинена нормальному закону распределения, то вероятность попадания случайной величины Х в i-ый частичный интервал Pi вычисляются по следующей формуле:

,

где xi, xi+1 – границы i-го частичного интервала;

; - нормированные величины;

a, σ – соответственно математическое ожидание и стандартное отклонение случайной величины X;

- функция Лапласа (табличная величина, приложение), причем - нечетная функция.

Пример 7.6. По данным примера 7.4 определить теоретические частоты в предположении, что случайная величина Х (генеральная совокупность) распределена по нормальному закону. Построить полигон эмпирических и теоретических частот.

Решение

Для расчета теоретических частот вычислим нормированные величины ui; ui+1:

1 интервал: -∞; ;

2 интервал: -1,80; ;

3 интервал: -0,91; ;

4 интервал: -0,03; ;

5 интервал: 0,86; ;

6 интервал: 1,74; ∞.

Таблица 7

Расчет теоретических частот

Границы интервалов хi; хi+1

Границы

интервалов

ui; ui+1

1

-∞; 500

-∞; -1,80

0

0,0360

0,0360

28,18

2

500; 1000

-1,80; -0,91

0,0360

0,1814

0,1454

113,85

3

1000; 1500

-0,91; -0,03

0,1814

0,4881

0,3067

240,15

4

1500; 2000

-0,03; 0,86

0,4881

0,8051

0,3170

248,21

5

2000; 2500

0,86; 1,74

0,8051

0,9591

0,1540

120,58

6

2500; ∞

1,74; ∞

0,9591

1

0,0409

32,02

Итого

-

-

-

1

783

Наглядно расхождение эмпирических и теоретических частот можно показать с помощью полигона (рис. 3).

Рисунок 2. Полигон теоретических и эмпирических частот

3 этап: проверка гипотезы о законе распределения.

Как бы хорошо ни был подобран теоретический закон распределения, между эмпирическим и теоретическим распределениями неизбежны расхождения. Закономерно возникает вопрос: объясняются ли эти расхождения только случайными обстоятельствами, связанными с ограниченным числом наблюдений, или они являются существенными и связаны с тем, теоретический закон распределения подобран неудачно. Для ответа на данный вопрос служат критерии согласия.

Пусть необходимо проверить нулевую гипотезу H0 о том, что исследуемая случайная величина X подчиняется определенному закону распределения. Для проверки гипотезы H0 выбирают некоторую случайную величину U, характеризующую степень расхождения теоретического и эмпирического распределений, закон распределения которой при достаточно больших n известен и практически не зависит от закона распределения случайной величины X.

Зная закон распределения U, можно найти вероятность того, что U приняла значение не меньше, чем фактически наблюдаемое в опыте u, т.е. . Если мала, то это означает в соответствии с принципом практической уверенности, что такие как в опыте, и бóльшие отклонения практически невозможны. В этом случае гипотезу H0 отвергают. Если же вероятность не мала, расхождение между эмпирическим и теоретическим распределениями несущественно и гипотезу H0 можно считать не противоречащей опытным данным.

Наиболее часто в практике статистических исследований используются критерии согласия К. Пирсона (хи-квадрат), В.И. Романовского, А.Н. Колмогорова, Б.С. Ястремского.

В χ2-критерий Пирсона в качестве меры расхождения U берется величина χ2, равная:

,

которая имеет χ2-распределение с степенями свободы, где m – число интервалов эмпирического распределения (вариационного ряда); r – число параметров теоретического распределения.

Схема применения χ2-критерия для проверки гипотезы H0 сводится к следующему:

1) определяется мера расхождения эмпирических и теоретических часто χ2;

2) для заданного уровня значимости α (как правило, принимается на уровне 0,05 или 0,01) по справочной таблице χ2-распределения находят критическое значение при числе степеней свободы ;

3) если расчетное значение χ2 больше критического , т.е. , то гипотеза H0 отвергается, если , то гипотеза H0 не противоречит опытным данным.

Примечание: статистика χ2 имеет χ2-распределение лишь при , поэтому необходимо, чтобы в каждом интервале было достаточное количество наблюдений, по крайней мере, не меньше 5. Если какой-либо интервал не удовлетворяет данному требованию, то имеет смысл объединить его с соседним таким образом, чтобы в объединенных интервалах . В данном случае параметр m при расчете числа степеней свободы уменьшается на число таких объединенных интервалов.

На практике кроме критерия χ2 часто используют критерий Колмогорова, в котором в качестве меры расхождения между теоретическим и эмпирическим распределениями рассматривают максимальное значение абсолютной величины разности между эмпирической и теоретической функциями распределения:

,

называемое статистикой критерия Колмогорова.

Схема применения критерия Колмогорова:

1) строятся эмпирическая функция распределения и предполагаемая теоретическая;

2) определяется мера расхождения между теоретическим и эмпирическим распределением D и вычисляется величина:

;

3) если вычисленное значение λ окажется не больше критического λα, определенного на уровне значимости α (λ0,05=1,36; λ0,01=1,63), то нулевая гипотеза H0 не противоречит опытным данным.

Примечание: применение критерия Колмогорова в принципе возможно лишь тогда, когда теоретическая функция распределения задана полностью. Однако такие случаи в практике встречаются редко. Обычно из теоретических соображений известен лишь вид функции распределения, а ее параметры определяются по эмпирическим данным. При применении критерия χ2 это обстоятельство учитывается соответствующим уменьшением числа степеней свободы. Такого рода поправок в критерии Колмогорова не предусмотрено. Поэтому, если при неизвестных значениях параметров применить критерий Колмогорова, взяв за значения параметров их оценки, вычисленные по выборке, то получим завышенное значение вероятности , и, следовательно, бóльшее критическое значение λα. В результате есть риск в ряде случаев принять нулевую гипотезу H0 о законе распределения случайной величины как правдоподобную, в то время как на самом деле она противоречит опытным данным.

Пример 7.7. По данным примеров 7.3 и 7.5 на уровне значимости α=0,05 проверить гипотезу H0 о том, что случайная величина Х – число поврежденных изделий, распределена по закону Пуассона.

Для определения статистики χ2 составим таблицу:

Таблица