Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
konspekt_lekciij_Kon.doc
Скачиваний:
19
Добавлен:
05.05.2019
Размер:
2.3 Mб
Скачать

3.2 Силовой расчет

Силовой расчет начинается с последней, т.е. наиболее удаленной от ведущего звена группы Ассура, и кончается расчетом ведущего звена.

В качестве примера рассмотрим силовой расчет двухповодковой групп Ассура. На рис.5,а приведена схема двухповодковой группы второго класса первого вида. На звенья 2 и 3 действуют известные силы и моменты. В точках B и D прикладываем неизвестные реакции R12 и R43 отброшенных звеньев 1 и 4 на оставшиеся 2 и 3, условно направляя их вверх. Уравнение равновесия группы имеет вид

Разложим векторы реакций на составляющие по направлениям звеньев (нормальные) и перпендикулярно звеньям (тангенциальные):

; .

Тогда уравнение равновесия примет вид

Составляющие реакции и определяют из условия равновесия звеньев 2 и 3. Для этого составляют уравнения моментов для каждого из звеньев относительно точки C.

Для звена 2

MC( ) + MC( ) + M2 = 0,

откуда

Для звена 3

MC( ) + MC( ) + M3 = 0,

откуда

Составляющие реакций и и полные реакции и определяем из плана сил (рис.5б), построенного на основе уравнения равновесия.

Из начала плана сил (точка а) в некотором масштабе F проводим вектор силы и из его конца – вектор силы .Из начала вектора и из конца вектора проводим найденные выше силы BC и CD. Из точек d и e проводим линии в направлении сил  и  . Точка f пересечения этих двух линий определит числовые значения и направления сил , , и . Полная реакция во внутреннем шарнире C двухповодковой группы определяется из условия равновесия сил, действующих на звенья 2 или 3:

Соединяя точки b и f , найдем реакции .

Расчет ведущего (входного) звена. Это звено входит со стойкой во вращательную или поступательную пару пятого класса Кинематическая цепь статически определима при условии 3n -2p5 = 0. Ведущее звено при n = 1 и p5 = 1 не будет находиться в равновесии. Для того чтобы ведущее звено находилось в равновесии, необходимо дополнительно ввести уравновешивающую силу или уравновешивающий момент , которые бы уравновесили все силы и моменты, приложенные к ведущему звену.

На рис.6 представлены два случая расчета реакции во вращательной паре пятого класса О

Рис.6. К кинетостатическому расчету ведущего звена:

а- силовое нагружение ведущего звена с уравновешивающей силой; б – план сил при наличие Fур ; в – план сил при наличие Мур; г – силовое нагружение с уравновешивающим моментом

В первом случае (рис.6,а) к ведущему звену приложена уравновешивающая сила Fур, линией действия которой задана. Для ее определения составляем уравнение моментов всех сил, действующих на ведущее звено, относительно точки А:

MA( + MA( + M1 + MA( = 0,

откуда

MA( = Fур = -MA( + M1 + MA( ,

или

Fур = - MA( + M1 + MA( .

Уравнение равновесия для ведущего звена

Реакция определяется из плана сил (рис.6,б).

Во втором случае (рис.6,б) к ведущему звену приложен уравновешивающий момент Mур. Из уравнения моментов относительно точки А определяем Mур:

Mур+ MA( + M1 + MA( = 0,

Откуда

Mур = -MA( + M1 + MA( .

Уравнение равновесия для ведущего звена в данном случае имеет вид

.

Реакция определится из плана сил (рис.6д).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]