
- •Т.Н.Греченк о
- •Глава I. Нейрофизиология. Клеточные основы обучения 10
- •Глава III. Ритмы. Функциональные состояния 160
- •Глава IV. Психофизиология зрительного восприятия 191
- •Глава V. Психофизиология алкоголизма и наркомании 313
- •Предисловие
- •1. Нейрон. Его строение и функции
- •1.1. Форма
- •Глава 1 Псирофизиолотя Клеточные основы обучения
- •1.2. Размер
- •1.3. Цвет нейронов
- •2. Электрическая возбудимость нервной клетки
- •2.1. Потенциал покоя
- •2.2. Электрическая возбудимость
- •2 Электрическая возбудимость нервной клетки
- •Глава I. Нейрофизиология Клеточные основы обу
- •2 Электрическая возбудимость нервной клетки
- •Глава I I [сйрофизиоло! ия Клеточные основы обучс
- •3. Синапсы
- •3 .1. Синаптические потенциалы
- •Глава I Нейрофизиология Клеточные основы обучения
- •3 Синапсы
- •Глава I 11сйроф|пиоло1ня Клеточные основы обучения
- •Глава I Нейрофизиология Клеточные основы обучения
- •3 Синапсы
- •3 Синапсы
- •Глава I Нейрофизиология Клеточные основы обучения
- •4 Трофическая роль сомы
- •4. Трофическая роль сомы
- •Глава I. Нейрофизиология. Клеточные основы обучени
- •5. Пейсмекерный потенциал
- •5. Пейсмекерный потенциал
- •Глава I. Нейрофизиология. Клеточные основы обу1
- •Глава I Нейрофизиология Клеточные осноиы обучения
- •5 Пейсмекерный потенциал
- •5 Пейсмекерный потенциал
- •Глава I. Нейрофизиология. Клеточные основы обучения
- •5. Пейсмекерный потенциал
- •5.3. Пейсмекерные потенциалы и локальные потенциалы
- •5.4. Активный транспорт ионов и мембранный потенциал
- •Глава I. Нейрофизиология Клеточные основы обучения
- •5.5. Влияние температуры на пейсмекер
- •Глава I Нейрофизиология Клеточные основы обучения
- •5 Пейсмекерный потенциал
- •5.6. Генетическая регуляция пейсмекерного потенциала
- •Глава I Нейрофизиология Клеточные основы обучения
- •6 Организация рефлекторной дуги
- •6. Организация рефлекторной дуги
- •6.1. Концептуальная рефлекторная дуга
- •Глава I Нейрофизиология Клеточные основы обуч*
- •6 Организация рефлекторной дуги
- •6.1.1. Командный нейрон
- •Глава I Нейрофизиология. КлеточнЫ'
- •6 Организация рефлекторной дуги
- •6.1.2. Детектор
- •6.1.3. Модуляторные нейроны
- •Глава I 11ейрофизиология Клеточные основы обучения
- •7 Механизмы научения
- •6.2. Принципы кодирования номером канала
- •7. Механизмы научения
- •Глава 1. Нейрофизиология. Клеточные основы обучения
- •7. Механизмы научения
- •7.1. Следовые процессы
- •Глава I Нейрофизиология Клеточные основы обучения
- •7 Механизмы научения
- •7.2. Привыкание
- •7 Механизмы научения
- •7.2.1. Психофизиология памяти в школе е.Н. Соколова
- •7 Механизмы научения
- •Глава I Пеирофичиолошя Клеточные основы обучения
- •7 Механизмы научения
- •7.2.2. Нервная модель стимула
- •7 Механизмы научения
- •7 Механизмы научения
- •7 Механизмы научения
- •7 Механизмы научения
- •7.3. Пластичность нейронов
- •7.3.1. Ассоциативное обучение
- •7 Механизмы научения
- •Глава I I кч'фофпзио.Югия Клеточные основы обучения
- •Глава I Псйрофизиоло! ия Клеючные основы обучения
- •7 Механизмы научения
- •7 Механизмы научения
- •7 Механизмы научения
- •7 Механизмы научения
- •Глава I I (ейрофшиология Клеготные основы обуи
- •7 Механизмы научения
- •Глава II. Психофизиология памяти
- •Глава II Психофизиология памяти
- •2 Теории памяти
- •2. Теории памяти
- •2.1. Общие понятия
- •Глава II. Психофизиология памяти
- •2 Теории памяти
- •2.2. Временная организация памяти
- •2.2.1. Амнестические воздействия
- •2.2.2. Виды обучения животных
- •Глава II Психофизисшм ия памя ги
- •2 Теории памяти
- •2 Теории памяти
- •Глава II Психсх|шзиоло[ия памяти
- •2 Теории памяти
- •2.2.7. Стадии фиксации памяти
- •Глава II Психофизиоло! ня памяти
- •2.3. Теория состояний энграммы
- •2.3.1. Восстановление памяти
- •Глава II Психофизиология памяти
- •Глава II Пспхофизлоло! ия памяти
- •2 Теории памяти
- •Глава 11 Нсихофиэиолошя памяти
- •2 Теории памяти
- •Глава II Психофи smo.Ioi ия памяти
- •2 Теории памяти
- •Глава II Психофизиология памяти
- •2 Теории памяти
- •Глава II Психофизиочо! ия намят
- •2 Теории памяти
- •Глава II Психофизиология памяти
- •2 Теории памяти
- •Глава II. Психофизиология памяти
- •2. Теории памяти
- •2.4. Распределенность энграммы
- •2 Теории памяти
- •2.4.1. Распределенность энграммы по структурам мозга
- •Глава II Психофизиология памяти
- •2 Теории памяти
- •Глава 11 Психофизиология памяти
- •2 Теории памяти
- •Глава II Психофизиология памяти
- •2 Теории памяти
- •2 Теории памяти
- •2.4.3. Реорганизация нейронной цепи
- •2 Теории памяти
- •3. Процедурная и декларативная память
- •Глава II Психофизиология памяти
- •4 Биохимические и молекулярные механизмы памяти
- •Глава II Психофизиология памяти
- •4 Биохимические и молекулярные механизмы памяти
- •4 Биохимические и молекулярные механизмы памяти
- •Глава III Ритмы Функциональные сое юяния
- •Глава III. Ритмы. Функциональные состояния
- •1 Типы ритмов
- •1. Типы ритмов
- •Глава III. Ритмы. Функциональные состояния
- •2. Механизмы ритмов
- •2. Механизмы ритмов
- •Глава III Ритмы Функциональные состояния
- •3. Психофизиология функциональных состояний
- •Глава 111 Ритмы. Функциональные состояния
- •3 Психофизиология функциональных состояний
- •3.1. Что такое функциональное состояние
- •Глава III Ритмы Функциональные состояния
- •3.2. Сон и бодрствование
- •3.2.1. Виды сна
- •Глава III. Ритмы Функциональные состояния
- •Глава III Ритмы Функциональные состояния
- •Глава III Ритмы Функциональные состояния
- •Глава III Ритмы Функциональные состояния
- •3 Психофизиология функциональных состояний
- •3.2.2. Механизмы сна
- •Глава III Ритмы Функциональные состояния
- •3.2.3. Продолжительность сна
- •3.2.4. Спячка
- •Глава III. Ритмы. Функциональные состояния
- •3.2.5. Значение сна
- •4. Механизмы восприятия времени
- •Глава III Ритмы Функциональные состояния
- •1. Эволюция глаза
- •Глава IV 11сихофизиология зрительного восприятия
- •2. Глаз
- •2.1. Строение глаза
- •Глава IV Психофизиология зрительного восприятия
- •Глава IV Психофизиоло! ия зрительного восприятия
- •2.2. Адаптация к свету и темноте
- •Глава IV Психофизиология зрительного иосприятия
- •2.3. Влияние длительности раздражения
- •2.4. Влияние площади раздражения
- •2.5. Контраст
- •Глава IV Психофизиочошя зрите 1ыюго восприятия
- •Глава IV Психофизиология зрительного восприятия
- •2.6. Чувствительность глаза к свету
- •Глава IV. Психофизиология зрительного восприятия
- •3. Сетчатка
- •3.1. Общая характеристика
- •3 Сетчатка
- •Глава IV Психофизиология зрительного восприятия
- •3 Сетчатка
- •Глава IV. Психофизиология зрительного восприятия
- •3 Сетчатка
- •3.2. Фоторецепторы
- •Глава IV Психофизиология зрительного восприятия
- •3 Сетчатка
- •Глава IV. Психофизиология зрительного восприятия
- •3. Сетчатка
- •3.3. Биполярные и горизонтальные клетки
- •3. Сетчатка
- •3.4. Амакриновые клетки
- •Глава IV Психофизиология зрительно! о восприятия
- •Глава IV Психофизиология зрительного восприятия
- •3 Сетчатка
- •Глава IV Психофизиология зрительно! о восприятия
- •4 Топографическое отображение
- •4. Топографическое отображение
- •Глава IV Психофизиология зрительного восприятия
- •5. Зрительные области мозга
- •5. Зрительные области мозга
- •5.1. Наружное коленчатое тело
- •Глава IV. Психофизиология зрительного восприятия
- •5. Зрительные области мозга
- •5.2. Архитектура зрительной коры
- •Глава IV Психофизиология зрительпою восприятия
- •5 Зрительные области мозга
- •5.2.1. Анатомия зрительной коры
- •5.2.2. Слои зрительной коры
- •6 Рецептивные поля
- •6. Рецептивные поля
- •6.1. Рецептивные поля ганглиозных клеток сетчатки
- •Глава IV Психофизиология зрительного восприятия
- •6 Рецептивные поля
- •6.2. Рецептивные поля биполярных клеток
- •Глава IV Психофизиология зрительной) восприятия
- •6 Рецептивные поля
- •6.3. Рецептивные поля нейронов наружного коленчатого тела
- •6.4. Ответы клеток в коре
- •Глава IV Психофизиология зрительного восприятия
- •6. Рецептивные поля
- •Глава IV Психофизиологая зрительного восприятия
- •6 Рецептивные поля
- •6.4.1. Простые рецептивные поля
- •Глава IV Психофизиология зрительного восприятия
- •6 Рецептивные поля
- •6.4.2. Сложные рецептивные поля
- •6.5. Ориентационные колонки
- •Глава IV. Психофизиология зрительного восприятия
- •6. Рецептивные поля
- •6.6. Дирекциональная избирательность
- •Глава IV Психофизиолоп-шзрителыюю восприятия
- •6 Рецептивные поля
- •6.7. Исследование коры
- •7. Нейробиология цветового зрения
- •7.1. Основные теории цветового зрения
- •7 Нейробиология цветового зрения
- •Глава IV Психофизиология зрительного восприятия
- •7.2. Цветовая слепота
- •Глава IV Психофизиология зрительного восприятия
- •7.3. Физиология цветового зрения
- •7.3.1. Цветоразличение на уровне сетчатки
- •Глава IV Психофизиология зрительного восприятия
- •Глава IV Психофизиология зрительного восприятия
- •Глава IV Психофизиология зрительного восприятия
- •8 Два глаза
- •8. Два глаза
- •Глава IV. Психофизиология зрительного восприятия
- •8. Два глаза
- •8.1. Бинокулярная конвергенция
- •8 Два глаза
- •Глава IV Психофизиология зрительного иосприятия
- •Глава IV Психофизиология зрительного восприятия
- •8.2.2. Формирование колонок глазодоминантности
- •8.3. Пластичность зрительной системы
- •8 Два глаза
- •Глава IV Психофизиология зрительного восприятия
- •8 Два глаза
- •Глава IV Психофизиология зри юлыюю восприятия
- •8.5. Косоглазие
- •Глава IV Психофизиология зрительного восприятия
- •8 Два глаза
- •Глава IV Психофизиология зритслыгош восприятия
- •8 Два глаза
- •8.6. Механизмы нарушений в зрительной системе
- •8.7. Восстановление
- •8.8. Окружающая среда и зрение
- •8.9. Искажения и перспектива
- •Глава IV Психофизиология зрительного восприятия
- •9. Стереоскопическое зрение
- •9. Стереоскопическое зрение
- •Глава IV Психофизиология зрительного восприятия
- •9. Стереоскопическое зрение
- •9.1. Диспаратность и восприятие глубины
- •9.2. Монокулярное восприятие глубины
- •Глава IV. Психофизиология зрительного восприятия
- •9. Стереоскопическое зрение
- •9.3. Мозолистое тело
- •Глава IV Психофизиология зрительного восприят ия
- •9 Стереоскопическое зрение
- •Глава IV Психофизиология зрительной) носирпяшя
- •9 Стереоскопическое зрение
- •9.4. Физиология стереоскопического зрения
- •9. Стереоскопическое зрение
- •Глава IV Психофизиология зри гелыюго восприятия
- •9 Стереоскопическое зрение
- •9.5. Необъяснимые явления в стереоскопическом зрении
- •10 Карты коры
- •9.6. Стереослепота
- •10. Карты коры
- •10 Карты коры
- •Глава IV Психофизиология зрительного .Восприятия
- •Глава V. Психофизиология алкоголизма и наркомании
- •Психофизиология алкоголизма
- •Психофизиология наркомании
- •Глава V Психофизиотогия алкоголизма и наркомании
- •1. Психофизиология алкоголизма
- •Глава V Психофизиология алкоголизма и наркомании
- •Глава V Нсихофиэио ioi ня ачкогоиизма и наркомании
- •1.2. Нейронные системы и этанол
- •Глава V. Психофизиология алкоголизма и наркомании
- •1 Психофизиология алкоголизма
- •Глава V Психофизиология алкоголизма и наркомании
- •1 Психофизиология алкоголизма
- •Глава V Психофизиология а чкоголизыа и наркомании
- •1 Психофизиология алкоголизма
- •2. Психофизиология наркомании
- •2 Психофизиология наркомании
- •Глава V Психофизиология алкоголизма и наркомании
- •3 Психофизиология и экология
- •3. Психофизиология и экология
- •Заключение
Глава I. Нейрофизиология Клеточные основы обу
2 Электрическая возбудимость нервной клетки
21
Анализ
восходящей части потенциала действия
в случае такой ор-тодромной
(синаптической) активации нервной
клетки показывает, что
и в этом случае на ней имеется перегиб,
свидетельствующий о неоднородности
механизма деполяризации мембраны. Как
и при антидромной
активации, можно вызвать частичный
потенциал действия
в области этого перегиба, выявив наличие
начального быстрого редуцированного
по амплитуде пика. Эти данные указывают
на существенные
различия пороговых значений электрической
возбудимости мембраны в начальной
части аксона и мембраны сомы, приводящие
к тому, что деполяризующее синаптическое
действие сначала вызывает генерацию
нервного импульса в более возбудимой
аксональной мембране и лишь затем
включается механизм электрической
возбудимости
соматической мембраны.
Особенно удобными объектами оказались униполярные нейроны беспозвоночных животных, благодаря легкости экспериментального доступа к ним и их большим размерам. Многочисленные исследования, проведенные, в частности, на нейронах виноградных улиток и аплизий, показали, что в соме таких униполярных нейронов могут возникать максимальные потенциалы действия при всех тех способах ее активации, которые были описаны выше для двигательных нейронов спинного мозга.
Среди очень большого количества исследованных таким образом нейронов самого различного типа лишь в некоторых случаях были обнаружены клетки, сома которых оказалась лишенной механизма электрической возбудимости. Наиболее известным примером таких невозбудимых нейронов являются биполярные нейроны сетчатки глаза, соединенные синаптически с одной стороны с рецепторными клетками, а с другой с ганглиозными клетками, аксоны которых покидают сетчатку и образуют зрительный нерв. Направленный в сторону рецепторов отросток биполярной клетки можно рассматривать как дендрит, а направленный в сторону ганглиозных клеток — как коротенький аксон. Биполярные клетки отличаются очень большими размерами (расстояние между разветвлениями их отростков менее 100 мкм), и поэтому в них возможно распространение электрических токов, возникающих в постсинаптических участках дендритного отростка, без значительного изменения через всю клетку вплоть до окончаний аксона. В данном случае участие специального механизма генерации нервного импульса является функционально необходимым для передачи сигнала внутри сетчатки. Внутриклеточное отведение потенциалов из таких клеток сопряжено с большими трудностями, и всегда есть опасность повреждения нейрона микроэлектродом. Ни в одном случае не были зарегистрированы потенциалы действия, хотя
медленные электрические колебания стабильно регистрировались в течение длительного времени. Отсутствие нервных импульсов трудно объяснить повреждением клетки, так как в более мелких ганглиозных клетках и даже аксонах импульсы отводились регулярно.
Нейроны очень небольшого размера, сходные с биполярными клетками сетчатки (так называемые нейроны Гольджи II типа) морфологически описаны и в некоторых отделах центральной нервной системы. Однако Достоверное внутриклеточное отведение из таких клеток затруднено в связи со сложностью их идентификации в мозговой ткани. Возможно, что в некоторых из них механизм электрической возбудимости также неразвит. Отсутствие или слабая выраженность механизма электрической возбудимости отмечена и в некоторых клетках, сома которых имеет очень большие размеры (клетки сердечного ганглия омара, маутнеровские клетки мозга рыбок).
Параллельно с решением вопроса об электровозбудимости мембраны сомы нервной клетки были предприняты попытки рассмотреть вопрос об электрической возбудимости дендритов. Ответ на этот вопрос не может быть таким же однозначным, как ответ на вопрос об электрической возбудимости сомы. Дендритные отростки нервных клеток различного типа чрезвычайно отличаются по своей структурной организации, и у большинства чувствительных нейронов они часто неотличимы и по структуре, и по функции от аксонов. Способность к генерации и проведению нервного импульса у таких длинных дендритных отростков является необходимым условием передачи ими сигналов от действующих на рецепторные мембранные структуры внешних раздражений. Наиболее сложной проблемой является вопрос о наличии механизма электрической возбудимости в концевых разветвлениях дендритов, т. е. там, где расположены наиболее важные в функциональном отношении структуры их мембраны, обусловливающие способность воспринимать действие внешних раздражений или медиаторных химических веществ. Однако получение убедительного ответа на этот вопрос встретило большие трудности. Надежное введение микроэлектрода в такие разветвления проблематично, хотя попытки предпринимались. С. Терцуоло и Т. Араки (1961) использовали погружение двух скрепленных друг с другом микроэлектродов в двигательные нейроны спинного мозга, расстояние между кончиками микроэлектродов составляло несколько микрометров. Погружение повторялось многократно в надежде, что случайно один из кончиков войдет в сому, а другой — в дендрит одного и того же двигательного нейрона. В небольшом количестве экспериментов удалось осуществить отведение при помощи этих двух микроэлектродов в ответ на антидромное возбуждение хорошо синхронизированных максималь-
22