- •Т.Н.Греченк о
- •Глава I. Нейрофизиология. Клеточные основы обучения 10
- •Глава III. Ритмы. Функциональные состояния 160
- •Глава IV. Психофизиология зрительного восприятия 191
- •Глава V. Психофизиология алкоголизма и наркомании 313
- •Предисловие
- •1. Нейрон. Его строение и функции
- •1.1. Форма
- •Глава 1 Псирофизиолотя Клеточные основы обучения
- •1.2. Размер
- •1.3. Цвет нейронов
- •2. Электрическая возбудимость нервной клетки
- •2.1. Потенциал покоя
- •2.2. Электрическая возбудимость
- •2 Электрическая возбудимость нервной клетки
- •Глава I. Нейрофизиология Клеточные основы обу
- •2 Электрическая возбудимость нервной клетки
- •Глава I I [сйрофизиоло! ия Клеточные основы обучс
- •3. Синапсы
- •3 .1. Синаптические потенциалы
- •Глава I Нейрофизиология Клеточные основы обучения
- •3 Синапсы
- •Глава I 11сйроф|пиоло1ня Клеточные основы обучения
- •Глава I Нейрофизиология Клеточные основы обучения
- •3 Синапсы
- •3 Синапсы
- •Глава I Нейрофизиология Клеточные основы обучения
- •4 Трофическая роль сомы
- •4. Трофическая роль сомы
- •Глава I. Нейрофизиология. Клеточные основы обучени
- •5. Пейсмекерный потенциал
- •5. Пейсмекерный потенциал
- •Глава I. Нейрофизиология. Клеточные основы обу1
- •Глава I Нейрофизиология Клеточные осноиы обучения
- •5 Пейсмекерный потенциал
- •5 Пейсмекерный потенциал
- •Глава I. Нейрофизиология. Клеточные основы обучения
- •5. Пейсмекерный потенциал
- •5.3. Пейсмекерные потенциалы и локальные потенциалы
- •5.4. Активный транспорт ионов и мембранный потенциал
- •Глава I. Нейрофизиология Клеточные основы обучения
- •5.5. Влияние температуры на пейсмекер
- •Глава I Нейрофизиология Клеточные основы обучения
- •5 Пейсмекерный потенциал
- •5.6. Генетическая регуляция пейсмекерного потенциала
- •Глава I Нейрофизиология Клеточные основы обучения
- •6 Организация рефлекторной дуги
- •6. Организация рефлекторной дуги
- •6.1. Концептуальная рефлекторная дуга
- •Глава I Нейрофизиология Клеточные основы обуч*
- •6 Организация рефлекторной дуги
- •6.1.1. Командный нейрон
- •Глава I Нейрофизиология. КлеточнЫ'
- •6 Организация рефлекторной дуги
- •6.1.2. Детектор
- •6.1.3. Модуляторные нейроны
- •Глава I 11ейрофизиология Клеточные основы обучения
- •7 Механизмы научения
- •6.2. Принципы кодирования номером канала
- •7. Механизмы научения
- •Глава 1. Нейрофизиология. Клеточные основы обучения
- •7. Механизмы научения
- •7.1. Следовые процессы
- •Глава I Нейрофизиология Клеточные основы обучения
- •7 Механизмы научения
- •7.2. Привыкание
- •7 Механизмы научения
- •7.2.1. Психофизиология памяти в школе е.Н. Соколова
- •7 Механизмы научения
- •Глава I Пеирофичиолошя Клеточные основы обучения
- •7 Механизмы научения
- •7.2.2. Нервная модель стимула
- •7 Механизмы научения
- •7 Механизмы научения
- •7 Механизмы научения
- •7 Механизмы научения
- •7.3. Пластичность нейронов
- •7.3.1. Ассоциативное обучение
- •7 Механизмы научения
- •Глава I I кч'фофпзио.Югия Клеточные основы обучения
- •Глава I Псйрофизиоло! ия Клеючные основы обучения
- •7 Механизмы научения
- •7 Механизмы научения
- •7 Механизмы научения
- •7 Механизмы научения
- •Глава I I (ейрофшиология Клеготные основы обуи
- •7 Механизмы научения
- •Глава II. Психофизиология памяти
- •Глава II Психофизиология памяти
- •2 Теории памяти
- •2. Теории памяти
- •2.1. Общие понятия
- •Глава II. Психофизиология памяти
- •2 Теории памяти
- •2.2. Временная организация памяти
- •2.2.1. Амнестические воздействия
- •2.2.2. Виды обучения животных
- •Глава II Психофизисшм ия памя ги
- •2 Теории памяти
- •2 Теории памяти
- •Глава II Психсх|шзиоло[ия памяти
- •2 Теории памяти
- •2.2.7. Стадии фиксации памяти
- •Глава II Психофизиоло! ня памяти
- •2.3. Теория состояний энграммы
- •2.3.1. Восстановление памяти
- •Глава II Психофизиология памяти
- •Глава II Пспхофизлоло! ия памяти
- •2 Теории памяти
- •Глава 11 Нсихофиэиолошя памяти
- •2 Теории памяти
- •Глава II Психофи smo.Ioi ия памяти
- •2 Теории памяти
- •Глава II Психофизиология памяти
- •2 Теории памяти
- •Глава II Психофизиочо! ия намят
- •2 Теории памяти
- •Глава II Психофизиология памяти
- •2 Теории памяти
- •Глава II. Психофизиология памяти
- •2. Теории памяти
- •2.4. Распределенность энграммы
- •2 Теории памяти
- •2.4.1. Распределенность энграммы по структурам мозга
- •Глава II Психофизиология памяти
- •2 Теории памяти
- •Глава 11 Психофизиология памяти
- •2 Теории памяти
- •Глава II Психофизиология памяти
- •2 Теории памяти
- •2 Теории памяти
- •2.4.3. Реорганизация нейронной цепи
- •2 Теории памяти
- •3. Процедурная и декларативная память
- •Глава II Психофизиология памяти
- •4 Биохимические и молекулярные механизмы памяти
- •Глава II Психофизиология памяти
- •4 Биохимические и молекулярные механизмы памяти
- •4 Биохимические и молекулярные механизмы памяти
- •Глава III Ритмы Функциональные сое юяния
- •Глава III. Ритмы. Функциональные состояния
- •1 Типы ритмов
- •1. Типы ритмов
- •Глава III. Ритмы. Функциональные состояния
- •2. Механизмы ритмов
- •2. Механизмы ритмов
- •Глава III Ритмы Функциональные состояния
- •3. Психофизиология функциональных состояний
- •Глава 111 Ритмы. Функциональные состояния
- •3 Психофизиология функциональных состояний
- •3.1. Что такое функциональное состояние
- •Глава III Ритмы Функциональные состояния
- •3.2. Сон и бодрствование
- •3.2.1. Виды сна
- •Глава III. Ритмы Функциональные состояния
- •Глава III Ритмы Функциональные состояния
- •Глава III Ритмы Функциональные состояния
- •Глава III Ритмы Функциональные состояния
- •3 Психофизиология функциональных состояний
- •3.2.2. Механизмы сна
- •Глава III Ритмы Функциональные состояния
- •3.2.3. Продолжительность сна
- •3.2.4. Спячка
- •Глава III. Ритмы. Функциональные состояния
- •3.2.5. Значение сна
- •4. Механизмы восприятия времени
- •Глава III Ритмы Функциональные состояния
- •1. Эволюция глаза
- •Глава IV 11сихофизиология зрительного восприятия
- •2. Глаз
- •2.1. Строение глаза
- •Глава IV Психофизиология зрительного восприятия
- •Глава IV Психофизиоло! ия зрительного восприятия
- •2.2. Адаптация к свету и темноте
- •Глава IV Психофизиология зрительного иосприятия
- •2.3. Влияние длительности раздражения
- •2.4. Влияние площади раздражения
- •2.5. Контраст
- •Глава IV Психофизиочошя зрите 1ыюго восприятия
- •Глава IV Психофизиология зрительного восприятия
- •2.6. Чувствительность глаза к свету
- •Глава IV. Психофизиология зрительного восприятия
- •3. Сетчатка
- •3.1. Общая характеристика
- •3 Сетчатка
- •Глава IV Психофизиология зрительного восприятия
- •3 Сетчатка
- •Глава IV. Психофизиология зрительного восприятия
- •3 Сетчатка
- •3.2. Фоторецепторы
- •Глава IV Психофизиология зрительного восприятия
- •3 Сетчатка
- •Глава IV. Психофизиология зрительного восприятия
- •3. Сетчатка
- •3.3. Биполярные и горизонтальные клетки
- •3. Сетчатка
- •3.4. Амакриновые клетки
- •Глава IV Психофизиология зрительно! о восприятия
- •Глава IV Психофизиология зрительного восприятия
- •3 Сетчатка
- •Глава IV Психофизиология зрительно! о восприятия
- •4 Топографическое отображение
- •4. Топографическое отображение
- •Глава IV Психофизиология зрительного восприятия
- •5. Зрительные области мозга
- •5. Зрительные области мозга
- •5.1. Наружное коленчатое тело
- •Глава IV. Психофизиология зрительного восприятия
- •5. Зрительные области мозга
- •5.2. Архитектура зрительной коры
- •Глава IV Психофизиология зрительпою восприятия
- •5 Зрительные области мозга
- •5.2.1. Анатомия зрительной коры
- •5.2.2. Слои зрительной коры
- •6 Рецептивные поля
- •6. Рецептивные поля
- •6.1. Рецептивные поля ганглиозных клеток сетчатки
- •Глава IV Психофизиология зрительного восприятия
- •6 Рецептивные поля
- •6.2. Рецептивные поля биполярных клеток
- •Глава IV Психофизиология зрительной) восприятия
- •6 Рецептивные поля
- •6.3. Рецептивные поля нейронов наружного коленчатого тела
- •6.4. Ответы клеток в коре
- •Глава IV Психофизиология зрительного восприятия
- •6. Рецептивные поля
- •Глава IV Психофизиологая зрительного восприятия
- •6 Рецептивные поля
- •6.4.1. Простые рецептивные поля
- •Глава IV Психофизиология зрительного восприятия
- •6 Рецептивные поля
- •6.4.2. Сложные рецептивные поля
- •6.5. Ориентационные колонки
- •Глава IV. Психофизиология зрительного восприятия
- •6. Рецептивные поля
- •6.6. Дирекциональная избирательность
- •Глава IV Психофизиолоп-шзрителыюю восприятия
- •6 Рецептивные поля
- •6.7. Исследование коры
- •7. Нейробиология цветового зрения
- •7.1. Основные теории цветового зрения
- •7 Нейробиология цветового зрения
- •Глава IV Психофизиология зрительного восприятия
- •7.2. Цветовая слепота
- •Глава IV Психофизиология зрительного восприятия
- •7.3. Физиология цветового зрения
- •7.3.1. Цветоразличение на уровне сетчатки
- •Глава IV Психофизиология зрительного восприятия
- •Глава IV Психофизиология зрительного восприятия
- •Глава IV Психофизиология зрительного восприятия
- •8 Два глаза
- •8. Два глаза
- •Глава IV. Психофизиология зрительного восприятия
- •8. Два глаза
- •8.1. Бинокулярная конвергенция
- •8 Два глаза
- •Глава IV Психофизиология зрительного иосприятия
- •Глава IV Психофизиология зрительного восприятия
- •8.2.2. Формирование колонок глазодоминантности
- •8.3. Пластичность зрительной системы
- •8 Два глаза
- •Глава IV Психофизиология зрительного восприятия
- •8 Два глаза
- •Глава IV Психофизиология зри юлыюю восприятия
- •8.5. Косоглазие
- •Глава IV Психофизиология зрительного восприятия
- •8 Два глаза
- •Глава IV Психофизиология зритслыгош восприятия
- •8 Два глаза
- •8.6. Механизмы нарушений в зрительной системе
- •8.7. Восстановление
- •8.8. Окружающая среда и зрение
- •8.9. Искажения и перспектива
- •Глава IV Психофизиология зрительного восприятия
- •9. Стереоскопическое зрение
- •9. Стереоскопическое зрение
- •Глава IV Психофизиология зрительного восприятия
- •9. Стереоскопическое зрение
- •9.1. Диспаратность и восприятие глубины
- •9.2. Монокулярное восприятие глубины
- •Глава IV. Психофизиология зрительного восприятия
- •9. Стереоскопическое зрение
- •9.3. Мозолистое тело
- •Глава IV Психофизиология зрительного восприят ия
- •9 Стереоскопическое зрение
- •Глава IV Психофизиология зрительной) носирпяшя
- •9 Стереоскопическое зрение
- •9.4. Физиология стереоскопического зрения
- •9. Стереоскопическое зрение
- •Глава IV Психофизиология зри гелыюго восприятия
- •9 Стереоскопическое зрение
- •9.5. Необъяснимые явления в стереоскопическом зрении
- •10 Карты коры
- •9.6. Стереослепота
- •10. Карты коры
- •10 Карты коры
- •Глава IV Психофизиология зрительного .Восприятия
- •Глава V. Психофизиология алкоголизма и наркомании
- •Психофизиология алкоголизма
- •Психофизиология наркомании
- •Глава V Психофизиотогия алкоголизма и наркомании
- •1. Психофизиология алкоголизма
- •Глава V Психофизиология алкоголизма и наркомании
- •Глава V Нсихофиэио ioi ня ачкогоиизма и наркомании
- •1.2. Нейронные системы и этанол
- •Глава V. Психофизиология алкоголизма и наркомании
- •1 Психофизиология алкоголизма
- •Глава V Психофизиология алкоголизма и наркомании
- •1 Психофизиология алкоголизма
- •Глава V Психофизиология а чкоголизыа и наркомании
- •1 Психофизиология алкоголизма
- •2. Психофизиология наркомании
- •2 Психофизиология наркомании
- •Глава V Психофизиология алкоголизма и наркомании
- •3 Психофизиология и экология
- •3. Психофизиология и экология
- •Заключение
6.6. Дирекциональная избирательность
Многие сложные клетки лучше реагируют на движение стимула в определенном направлении. Если прослушивать импульсную реакцию клетки, обладающую дирекциональной избирательностью, то создается впечатление, что при движении линии в одном направлении стимул как бы резко подталкивает клетку и заставляет ее разряжаться, а при движении в противоположном направлении происходит как бы сбой и стимул становится неэффективным.
Неизвестно, как именно устроены входные сети таких клеток с дирекциональной избирательностью. Возможно, что на вход такой клетки подключены простые клетки, реакции которых на движение стимула в противоположных направлениях неравнозначны, асимметричны. Рецептивные поля таких простых клеток асимметричны.
252
Глава IV Психофизиолоп-шзрителыюю восприятия
6 Рецептивные поля
253
Главная
причина того, что в сложных клетках мы
видим результат определенной организации
клеток с круглыми рецептивными полями
с центром и периферией, это очевидная
необходимость производить переработку
информации логически в два этапа.
Необходимое преобразование
могло бы быть осуществлено и в один
этап — если суммировать
на отдельных разветвлениях дендритов
сложных клеток входные
сигналы от клеток с круглыми рецептивными
полями. Наличие простых
клеток заставляет задуматься над тем,
что не стоит строить сложных
конструкций.
6.7. Исследование коры
Функциональная архитектура коры. Как связаны между собой физиологические свойства корковых клеток и их структурная организация? Имея в виду, что корковые клетки могут отличаться по положению их рецептивных полей, «сложности», предпочитаемой ориентации стимула, глазодоминантности, по оптимальному направлению движения стимула и оптимальной длине стимульной линии, правомерно ли ожидать, что соседние клетки сходны по некоторым из этих параметров? Или же клетки с разными свойствами просто рассыпаны по всей зрительной коре случайным образом, без всякой связи с их физиологическими свойствами?
Если изучать тонкую структуру коры, то на поперечных срезах можно увидеть отчетливые различия между отдельными ее слоями. Однако если прослеживать на поперечном срезе тот же слой по длине или же исследовать срезы одного слоя, сделанные параллельно границе слоев, то мы увидим один лишь серый однородный материал. Хотя такая однородность может указывать на случайное распределение клеток, мы знаем, что по крайней мере в отношении одной переменной клетки расположены весьма упорядоченно. Речь идет о закономерном соответствии между распределением клеток в стриарной коре и положением их рецептивных полей на сетчатке, т. е. о том, что соседние клетки коры должны иметь рецептивные поля, расположенные близко друг к другу в поле зрения. Именно такая картина выявляется в экспериментах. У двух клеток, лежащих рядом в коре, рецептивные поля обычно даже перекрываются на большей части своей площади. Тем не • менее эти поля не накладываются точно друг на друга. Если сдвигать микроэлектрод вдоль коры от клетки к клетке, то положения соответствующих рецептивных полей сдвигаются в направлении, которое можно предсказать, зная топографию отображения сетчатки в коре. Но как обстоит дело с остальными параметрами — глазодоминантностью, «сложностью», ориентацией адекватных стимулов и другими?
Потребовалось несколько лет для того, чтобы научиться достаточно надежно стимулировать корковые клетки и регистрировать их ответы; в результате появилась возможность описывать реакции не только отдельных клеток, но и сравнительно больших групп нейронов. В эксперименте Д. Хьюбелу и Т. Визелу удалось записать одновременно активность двух клеток.
Импульсные разряды одиночных клеток при таком отведении почти идентичны, однако величина и форма импульсов зависят от расстояния и от взаимного расположения клеток, так что разряды, отводимые одновременно от двух клеток, обычно оказываются разными, и поэтому их можно легко различить. Выполняя такого рода отведения от двух клеток, можно отчетливо увидеть, чем различаются соседние клетки и в чем они одинаковы.
Уже в первых записях активности корковых нейронов исследователи обнаружили, что часто две клетки, реакции которых можно регистрировать одновременно, одинаковы по глазодоминантности, сложности и по оптимальной ориентации стимулов. Такие совпадения вряд ли случайны, они позволяют предположить, что клетки с одними и теми же свойствами объединены в группы.
Трехмерная функциональная организация зрительной коры. С помощью микроэлектродов можно исследовать только отдельные точки коры. Для того, чтобы получить представление о трехмерной организации мозга, приходится медленно погружать электрод в глубину, время от времени останавливать его для записи активности какой-нибудь клетки (а возможно, — двух или трех клеток), отмечать по специальной шкале показания глубины, а затем повторять все сначала. Рано или поздно кончик микроэлектрода пройдет через весь корковый слой, и тогда электрод можно вынуть и снова ввести его в каком-нибудь другом месте. После окончания эксперимента делают срез, окрашивают его и исследуют под микроскопом с целью определить положение каждой из нервных клеток, активность которых регистрировалась. В одном эксперименте (длительностью около 24 часов) обычно удается сделать две-три проходки примерно по 4—5 мм каждая. За одну проходку можно наблюдать ответы примерно 200 клеток.
Микроэлектрод настолько тонок, что едва удается найти след от его прохождения под микроскопом, поэтому нет оснований думать, что при проходке микроэлектродом будет повреждено много клеток и это может повлиять на определение локализации микроэлектрода. Эту трудность удалось преодолеть, когда было обнаружено, что пропускание через микроэлектрод слабого тока приводит к разрушению клеток в ближайшей окрестности кончика микроэлектрода, и на гис-
254
Глапа IV Психофизиология зрительного восприятия
7 11ейробиология цветового зрения
255
тологических
срезах эта зона разрушения хорошо
видна. К счастью, при пропускании тока
сам микроэлектрод не повреждается.
Поэтому за
одну проходку ток пропускают 3—4 раза,
отмечая при этом глубину погружения
микроэлектрода, а так как глубину
отмечают и при регистрации
активности клеток, то можно оценить и
положение каждой из них.
Разумеется, при воздействии тока
погибает несколько клеток около
кончика микроэлектрода, однако их не
так много, чтобы могла быть
нарушена работа более удаленных
нейронов. Для того чтобы при этом
не исказить ответы клеток, лежащих
впереди на пути микроэлектрода, его
кончик немного продвигают вперед,
регистрируют активность клеток, а
затем кончик отводят назад и тогда уже
пропускают
ток.
Как и следовало ожидать, клетки во входном корковом слое — слое 4 — проявляют более простое поведение, чем клетки на выходе. У обезьяны клетки в слое 4С(3), куда приходят волокна из четырех верхних (мелкоклеточных) слоев НКТ, по-видимому, не обладают избирательностью к ориентации стимула и ведут себя подобно клеткам, имеющим круглые рецептивные поля с центром и периферией. В слое АСа, имеющем входы от двух вентральных (крупноклеточных) слоев НКТ, некоторые клетки обладают концентрическими полями, а всем остальным, видимо, свойственны простые рецептивные поля и ориен-тационная чувствительность. Если перейти к следующему уровню — к слоям, лежащим выше и ниже слоя 4 С, — то подавляющее большинство клеток окажутся сложными. Клетки, реагирующие на концы линий, в слоях 2 и 3 составляют около 20% и в других слоях встречаются редко. Таким образом, в целом обнаруживается явная корреляция между сложностью клеток и положением их в зрительном пути, которое можно оценить по числу синаптических переключений до данного места.
В утверждении, что большинство клеток выше и ниже слоя 4 — сложные, упускаются из виду существенные различия между слоями: сложные клетки здесь далеко не одинаковы. Разумеется, все они имеют одно общее свойство, характерное для сложных клеток, — на движущуюся линию оптимальной ориентации они отвечают по всему рецептивному полю, независимо от конкретного положения стимула. Однако они различаются между собой другими свойствами. Можно выделить четыре подтипа клеток, которые содержатся в основном в разных слоях. Большинство сложных клеток в слоях 2 и 3 отвечает тем лучше, чем длиннее стимульная линия (в этом проявляется свойство суммации по длине). Однако реакция таких клеток становится слабее, когда длина стимула превышает некоторую критическую величину (если данная сложная клетка относится к нейронам, реагиру-
ющим на концы линий). Что касается клеток слоя 5, то для них короткие линии, занимающие по длине лишь небольшую долю рецептивного поля, почти так же эффективны, как и длинные — рецептивные поля этих клеток гораздо больше, чем у клеток в слоях 2 и 3. Напротив, клетки слоя 6 реагируют тем лучше, чем длиннее линия с оптимальной ориентацией (их ответ начинает ухудшаться только тогда, когда линия занимает всю длину рецептивного поля, которая в несколько раз больше его ширины, т.е. рецептивное поле длинное и узкое). Можно сделать вывод, что аксоны, выходящие из слоев 5 и 6 и из слоев 2 и 3 и идущие к разным участкам мозга (к верхним бугоркам четверохолмия, к НКТ, к другим зрительным полям) должны служить для передачи разных видов зрительной информации.
Подводя итоги, можно сказать, что при переходе от слоя к слою в ответах клеток выявляются более важные различия, чем, скажем, различия в оптимальной ориентации стимула или же в характере глазо-доминантности. Наиболее заметные различия между клетками разных корковых слоев касаются сложности их реакций; это отражает тот простой анатомический факт, что одни слои расположены ближе к входу в кору, чем другие.
