Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Процессы мех. и ПУТИ ИХ ИНТЕН-И.doc
Скачиваний:
35
Добавлен:
28.04.2019
Размер:
2.2 Mб
Скачать

Обрабатываемость материалов резанием

Под обрабатываемостью понимается способность обрабатываемого материала разрушать и изнашивать контактные площадки инструмента до заданного критерия износа.

Полное исследование обрабатываемости какого-либо материала включает в себя следующие этапы:

  1. Определение оптимальной марки инструментального материала, оптимальной геометрии режущего инструмента и оптимального состава смазочно-охлаждающей жидкости.

  2. Исследование влияния различных факторов (скорости резания, подачи, глубины резания, геометрии режущего инструмента и др.) на качество обработанной поверхности, силы резания и износ режущего инструмента.

  3. Исследование влияния термообработки на обрабатываемость.

Оценку обрабатываемости производят по следующим параметрам: допускаемой скорости резания, качеству обработанной поверхности, силам и мощности, затрачиваемым на процесс резания и характеру образующейся стружки.

Основным параметром оценки обрабатываемости как при черновой, так и при чистовой обработке является скорость резания. Чем она выше, тем лучше обрабатываемость материала и наоборот.

Для определения обрабатываемости используют различные методы. Рассмотрим «классический» метод, который заключается в построении периода стойкости инструмента от скорости резания – Т=f(V). Данный метод является наиболее точным и объективно отражает влияние обрабатываемого материала на износ инструмента. Недостатком его является трудоемкость и большой расход обрабатываемого материала.

Если сравнивают обрабатываемость двух материалов А и Б, то для них в одинаковых условиях обработки экспериментально находят зависимость Т=f(V). Построение данной зависимости производится следующим образом. При постоянных значения глубины резания и подачи заготовка из материала Б обрабатывается на скорости резания V1 до заданного критерия износа (в нашем примере критерий равен h=0,5 мм ) и строится график h3=f(τ) (рис. 83, б). На данном графике определяется время Tv1 , которое проработал инструмент до величины износа по задней грани hз, равного 0,5 мм, которое будет соответствовать периоду стойкости инструмента при работе на скорости V1. Значение периода стойкости Tv1 переносим на график Т=f(V) и получаем на нем первую точку. По аналогии строим графики h3=f(τ) для скоростей V2, V3, V4 и т. д. и получаем для данных скоростей значения периодов стойкости Tv2, Tv3, Tv4 и т.д., которые переносим на график Т=f(V) . Построив зависимость T=f(V) для материала Б, аналогично строим зависимость T=f(V) для обрабатываемого материала Б. Если зависимость T=f(V) является монотонной, то ее аппроксимируют степенной функцией и находят две зависимости:

- для материала А и - для материала Б.

Затем, задавшись периодом стойкости Т=60мин, определяют соответствующие ему скорости резания V60А и V60Б. Коэффициент обрабатываемости будет равен .

При немонотонной зависимости T=f(V) (рис.67) находят отношение скоростей резания VA и VБ, допускаемых материалами А и Б при определенном значении периода стойкости инструмента, являющееся коэффициентом обрабатываемости при выбранном периоде стойкости.

Для повышения обрабатываемости материалов применяются следующие методы: термическая обработка обрабатываемого материала, изменение химического состава, введение в состав обрабатываемого материала легкоплавких добавок (висмут, селен, свинец и др.), которые не изменяют физико-механических свойств материала, подогрев срезаемого слоя заготовки (лазерный плазменный). Обрабатываемость различных материалов. Обрабатываемость конструкционных сталей ухудшается с увеличением содержания в них углерода и легирующих элементов, поскольку это приводит к повышению коэффициента истираемости материала и температуры резания. Наряду с химическим составом на обрабатываемость сталей влияет их микроструктура. Наибольшей истирающей способностью обладает феррит, небольшой коэффициент истираемости имее аустенит; истирающая способность перлита зависит от формы цементита – у пластинчатого перлита она больше, чем у зернистого; у зернистого перлита она тем меньше, чем меньше зерна цементита. Обрабатываемость чугунов определяется в первую очередь их микроструктурой и ухудшается по мере того, как углерод из свободного состояния (графит) переходит в связанное (цементит), обладающее повышенной истирающей способностью. На обрабатываемость чугуна влияет также размер и форма графита и цементита. Наилучшая обрабатываемость достигается при наличии сфероидальных зерен графита. Вследствие малых пластичности и склонности чугуна к упрочнению силы резания при его обработке меньше, чем при обработке сталей на ферритной основе. Однако из-за малой длины контакта стружки с передней поверхностью нормальные напряжения достаточно велики и концентрируются вблизи режущей кромки. Температура резания при обработке чугуна также меньше по сравнению с температурой, возникающей при обработке ферритных сталей той же твердости. Щднако обрабатываемость чугуна хуже. Обрабатываемость жаропрочных и нержавеющих сталей и сплавов существенно хуже по сравнению с обрабатываемостью конструкционных сталей и чугунов. Жаропрочными называют материалы, способные выдерживать механические нагрузки без существенных деформаций и обладающие жаростойкостью, т.е. способностью противостоять химическому разрушению под действием воздуха или других агрессивных сред при высоких температурах. Нержавеющими называются материалы, обладающие высокой коррозионной стойкостью в агрессивных средах, т. е. в атмосфере воздуха, паров воды и кислот. Худшая обрабатываемость данных материалов определяется их физико-механическими свойствами, структурой и теплофизическими характеристиками. К таким свойствам относятся: 1. Высокое упрочнение материала в процессе его обработки резанием. 2. Низкая теплопроводность. 3. Способность данных материалов сохранять исходную прочность и твердость при повышенных температурах. 4. Большая истирающая способность данных материалов, обусловленная наличием в них, кроме фазы твердого раствора, еще и второй фазы, когда образуются интерметаллидные или карбидные включения. Низкую обрабатываемость имеют титановые сплавы, которая обусловлена рядом их особенностей: малая пластичность, характеризуемая высоким коэффициентом упрочнения; высокая химическая активность к кислороду, азоту, водороду, что вызывает интенсивное охрупчивание поверхностного слоя сплавов вследствие диффузии в него атомов газа при повышении температуры; чрезвычайно низкая теплопроводность, более низкая, чем у жаропрочных сталей и сплавов. Алюминиевые сплавы с точки зрения обрабатываемости можно разделить на три группы. К первой относятся сплавы с низкой твердостью, имеющие склонность к налипанию на инструмент (например, дюралюминий в отожженном состоянии). Сплавы второй группы имеют высокую твердость, не налипают на инструмент (например, термически упрочненный дюралюминий, кованные сплавы АК6, АК8 и др.). В третью группу входят широко распространенные литые сплавы, содержащие кремний, в частности силумины различных сплавов. Для первых групп наиболее характерно образование сливной стружки в виде длинных лент и спиралей, для третьей – стружка легко дробится на короткие элементы. По сравнению со сталью алюминиевые сплавы обладают меньшей твердостью, более низким временным сопротивлением и лучшей теплопроводностью, что позволяет значительно повысить скорость резания и подачу. Высокая вязкость ряда алюминиевых сплавов интенсифицирует налипание частиц на рабочие поверхности инструмента, что затрудняет отвод стружки, может вызвать пакетирование стружки и привести к образованию задиров на обработанной поверхности. Алюминиевые сплавы склонны к наростообразованию и данный процесс протекает чрезвычайно активно. Максимальная высота нароста и его исчезновение отмечаются для алюминиевых сплавов при относительно более низких скоростях резания, чем для сталей. Медные сплавы с точки зрения обрабатываемости можно разбить на три группы: 1. Сплавы с гомогенной структурой (латуни Л60, Л63, бронзы БрА7, Бр04Ц3 и др., медь); 2. Сплавы с гетерогенной структурой (ЛЦ16К4, ЛЦ30А3, БрА10ЖЗМц2 и др.); 3. Сплавы, содержащие свинец (ЛС63-3, ЛЦ10С, БрС30 и др.). При обработке сплавов первой группы и красной меди образуется сливная вязкая и трудноломающаяся стружка. Сплавы второй группы также образуют сливную стружку, однако она менее прочная и значительно лучше ломается. При резании свинцовистых сплавов образуется короткая хрупкая стружка, а в случае высокого содержания свинца – стружка надлома почти в виде пыли. Обрабатываемость медных сплавов лучше по сравнению со сталями, коэффициент, характеризующий уровень скоростей резания, для них в 2 – 3 раза выше по сравнению с чугуном и сталью.