Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpory_po_vyshke_1_kurs_1_se23213may.doc
Скачиваний:
3
Добавлен:
21.04.2019
Размер:
1.64 Mб
Скачать

43. Производные и дифференциалы высших порядков. Производная параметрически заданных функций.

Производные и дифференциалы высших порядков.

Пусть функция f(x)- дифференцируема на некотором интервале. Тогда, дифференцируя ее, получаем первую производную

Если найти производную функции f(x), получим вторую производную функции f(x).

т.е. y = (y) или .

Этот процесс можно продолжить и далее, находя производные степени n.

.

Производная функции, заданной параметрически.

Пусть

Предположим, что эти функции имеют производные и функция x = (t) имеет обратную функцию t = Ф(х).

Тогда функция у = (t) может быть рассмотрена как сложная функция y = [Ф(х)].

т.к. Ф(х) – обратная функция, то

Окончательно получаем:

Таким образом, можно находить производную функции, не находя непосредственной зависимости у от х.

44-46. Теоремы о среднем. Правило Лопиталя-Бернулли. Формулы Тейлора и МакЛорена.

Теорема Роля: Если функция f(x) непрерывна на отрезке [a,b], дифференцируема на интервале (a,b) и на концах отрезка принимает одинаковые значения f(a)=f(b), то найдется хотя бы одна точка , в которой производная обращается в ноль, т.е. .

Теорема Коши: Если функции f(x) и непрерывны на отрезке [a,b], дифференцируемы на интервале (a,b), причем для , то найдется хотя бы одна точка , такая, что выполняется равенство .

Теорема Лагранжа: Если функция f(x) непрерывна на отрезке [a,b], дифференцируема на интервале (a,b), то найдется хотя бы одна точка такая, что выполняется равенство . Это так же является формулой о конечном приращении: приращение дифференцируемой функции на отрезке [a,b] равно приращению аргумента, умноженному на значение производной функции в некоторой точке этого отрезка. Если производная функции равна нулю на некотором промежутке, то функция постоянна на этом промежутке. Если две функции имеют равные производные на некотором промежутке, то они отличаются друг от друга на постоянное слагаемое. Правило Лопиталя (по раскрытию неопределенностей вида 0/0) : Пусть функции f(x) и непрерывны и дифференцируемы в окрестности точки и обращаются в ноль в этой точке: f( )= . Пусть в окрестности точки . Если существует предел , то .

Правило Лопиталя (по раскрытию неопределенностей вида ) : Пусть функции f(x) и непрерывны и дифференцируемы в окрестности точки (кроме, может быть, точки ), в этой окрестности . Если существует предел .

47-48.Монотонность функции. Экстремум. Необходимые и достаточные условия.

Теорема(необходимые условия). Если дифференцируемая на интервале (a,b) функция f(x) возрастает (убывает), то для любых . Док-во. Пусть функция f(x) возрастает на интервале (a,b). Возьмем произвольные точки х и х + на интервале (a,b) и рассмотрим отношение . Функция f(x) возрастает, поэтому если >0, то x+ >x и f(x+ )>f(x); если <0, то x+ >x и f(x+ )<f(x). В обоих случаях >0, так как числитель и знаменатель дроби имеют одинаковые знаки. По условию теоремы функция f(x) имеет производную в точке x и является пределом рассматриваемого отношения. Следовательно, . Аналогично рассматриваем тот случай, когда функция f(x) убывает на интервале (a,b). Данная теорема означает, что касательные к графику возрастающей дифференцируемой функции образуют острые углы с положительным направлением оси Ox или в некоторых точках параллельны оси Ox.

Теорема(достаточные условия). Если функция f(x) дифференцируема на интервале (a,b) и для , то эта функция возрастает (убывает) на интервале (a,b). Док-во. Пусть . Возьмем точки и из интервала (a,b), причем > . Применим к отрезку [ , ] теорему Лагранжа: f( ) - f( )= , где . По условию . Следовательно, f( ) - f( )>0 или f( )>f( ), т.е. функция f(x) на интервале (a,b) возрастает. Возрастающая или убывающая функция называется монотонной. Теорема (необходимое условие экстремума). Если дифференцируемая функция y=f(x) имеет экстремум в точке , то ее производная в этой точке равна нулю: . Док-во: Пусть, для определенности, -точка максимума. Значит, в окрестности точки выполняется неравенство . Но тогда , если >0, и , если <0. По условию теоремы производная существует. Переходя к пределу, при , получим , если <0 и , если >0. Поэтому : . Теорема (достаточное условие экстремума): Если непрерывная функция f(x) дифференцируема в некоторой -окрестности и критической точки и при переходе через нее 9слева направо) производная меняет знак с плюса на минус, то есть точка максимума; с минуса на плюс, то -точка минимума. Док-во: рассмотрим -окрестность точки . Пусть выполняются условия: и . Тогда функция f(x) возрастает на интервале , а на интервале она убывает. Отсюда следует, что значение f(x) в точке является наибольшим на интервале , т.е. f(x)<f( ) для всех . Это и означает, что - точка максимума функции.

49. Выпуклость, вогнутость, точки перегиба. Необходимые и достаточные условия. Асимптоты. Общая схема исследования функции.

- График функции y=f(x) назыв. выпуклым (вверх) на отрезке [a,b], если он расположен ниже касательной. Для дифференцируемой на [a,b] функции график расположен ниже любой касательной; для недифференцируемой функции график расположен выше хорды((a, f(a) и (b, f(b))).

- График функции назыв. вогнутым (выпуклым вниз) на [a,b], если он расположен выше касательной (ниже хорды). Если в левой U( ) график функции выпуклый в одну сторону, а в правой окрестности в другую сторону, то -точка перегиба.

- Если функция y=f(x) дважды дифференцируема на [a,b] и для любых , то график является выпуклым вниз(вогнутым). Если , то график является выпуклым. Достаточное условие точки перегиба: Пусть f - дважды дифференцируемая функция в окрестности и или не существует. Если при этом для любых , а для любых , то - точка перегиба.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]