Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpory_po_vyshke_1_kurs_1_se23213may.doc
Скачиваний:
3
Добавлен:
21.04.2019
Размер:
1.64 Mб
Скачать

Матрицы

и действия над матрицами. Умножение матриц. Согласованные матрицы

Матрица - прямоуг таблица чисел, содерж m-строк и n-столбцов.

Матрицы равны между собой, если равны соответств элементы этих матриц.

Матрица, в которой m=n наз квадратной или n-ого порядка.

3. Квадратная матрица, у которой все элементы, кроме элементов гл диагонали, равны 0 называется диагональной.

4. Диаг матрица, у которой каждый элемент главной диаг =1 наз единичной.

5. Квадратная матрица наз. треугольной, если все элементы, расположенные по одну сторону её гл диаг =0.

6. Матрица, у которой все числа, стоящие на гл диаг не нулевые, а также некоторое кол ненулевых строк, наз трапециевидной.

7. Матрица, содерж один столбец или строку, наз вектором из Rn пространства.

Действия:

Сложение – только для матриц одинакового размера.

Умножение на число. Множества матриц одинакового размера обознач Mm*n. Тогда введённое на этом мн-ве операции сложения и умнож на число превращ Mm*n в линейное пр-во, векторами которого явл матрицы m*n.

Умножение на вектор-столбец. Для умножения матрицы на вектор-столбец надо, чтобы число столбцов матрицы было равно числу координат вектора.

Две матрицы наз эквивалентными, если одна из них получена из другой с помощью элементарным преобраз. любую матрицу можно привести к канонической.

Операция умножения двух матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй матрицы.

Произведением матрицы Аm*n = (ai,g) на матрицу Вn*p = (bi,k) называется матрица Сm*p = (сi,k) такая, что:

,

где i= , , т.е. элемент i-той и k-ого столбца матрицы произведения С равен сумме произведений элементов i-той строки матрицы А на соответствующие элементы к-ого столбца матрицы В.

Матрицы А, n*m и В, m*n, назыв. согласованными. (если А согласованно с В, то это не значит, что В согласованно с А).

Смысл согласованности в том, чтобы количество столбцов 1-ой матрицы совпадало с количеством строк 2-ой матрицы. Для согласованных матриц можно определить операцию умножения.

Если матрицы A и B квадратные и одного размера, то A*B и B*A всегда существуют. Транспонированием называется смена всех элементов столбца соотв элементами строки. Если AT=A, то матрица А наз. симметричная (она обязательно квадратная).

---

2.

Определитель квадратной матрицы. Свойства определителей.

Определителем матрицы А называется число:

- матрица второго порядка.

Матрица 3-его порядка:

Свойства определителей:

  1. если А и В – квадратные матрицы n*n, то:

Замечание: АВ ВА

2.

3. пусть А = (аi,j) и при этом ее какой-либо ряд (либо столбец, либо строка) i-я строка обладает свойством, что:

4. определитель равен нулю, если в нем есть нулевой ряд.

5. определитель = 0, если у него есть два одинаковых (пропорциональных) параллельных ряда.

6. определитель диагональной матрицы равен произведению элементов, стоящих на главной диагонали.

7. определитель треугольной матрицы равен произведению чисел, стоящих на главной диагонали.

8. если в определителях поменять местами,

то определитель поменяет знак.

9. если к какому-то ряду определителя прибавить элементы другого параллельного ряда, умноженные на какое-то число (одинаковое), то определитель при этом не изменяется.

10. если какой-то ряд определителя содержит в себе общий множитель, то его можно вынести за знак определителя.

3. Теорема о разложении определителя. Теорема Лапласа.

Пусть есть определитель n-ого порядка. Зафиксируем число к: 1 .

В исходном определителе вычеркнем к строк и к столбцов.

В результате такой операции все элементы определителя можно отнести к 3-ем разным типам:

1. незачеркнутые

2. 1 раз зачеркнутые

3. дважды зачеркнутые

Теперь из дважды зачеркнутых составим определитель. Такой определитель называется минором.

Теорема 1: ( о разложении определителя): Это теорема лапласа:

Определитель равен сумме произведения всевозможных миноров одного и того же порядка к (к<n), ктр. можно составить из произвольно выбранных к параллельных рядов на их алгебраическое дополнение.

Наиболее часто на практике применяется случай, когда к=1, тогда Т1 переходит в Т2:

Т2 (о разложении определителя по элементам ряда): определитель равен сумме произведения элементов некоторого ряда на их алгебраическое дополнение.

4. Обратная матрица. Процедура ее нахождения. Аннулирование матриц.

Пусть есть матрица А – невырожденная.

А-1, A-1*A=A*A-1=E, где E –единичная матрица. A-1 имеет те же размеры, что и A.

Алгоритм нахождения обратной матрицы:

  1. вместо каждого элемента матрицы аij записываем его алгебраическое дополнение.

аij Аij

А* - союзная матрица.

  1. транспонируем полученную союзную матрицу. А

  2. делим каждый элемент союзной матрицы на определитель матрицы А.

, A-1 = A

Теорема: (об аннулировании определителя): сумма произведений элементов некоторого ряда определителя на алгебраическое дополнение к элементам другого параллельного ряда чвсегда равна нулю.

5. Ранг матрицы. Способы нахождения.

Максимальное число линейно-зависимых строк матрицы A наз. рангом матрицы и обознач r(a). Наибольшее из порядков миноров данной матрицы отличных от 0 наз рангом матрицы.

Свойства:

1)при транспонировании rang=const.

2)если вычеркнуть нулевой ряд, то rang=const;

3)rang=cost, при элементарных преобразованиях.

3)для вычисл ранга с помощью элементар преобраз матрица A преобраз в матриц B, ранг которой легко находится.

4)ранг треуг матрицы=числу ненулевых элем, располож на глав. диагоналях.

Методы нахождения ранга матрицы:

    1. метод окаймляющих миноров

    2. метод элементарных преобразований

метод окаймляющих миноров:

метод окаймляющих миноров позволяет алгоритмизировать процесс нахождения ранг-матрицы и позволяет свести к минимуму количество вычисления миноров.

  1. если в матрице все нулевые элементы, то ранг = 0

  2. если есть хоть один ненулевой элемент => r(a)>0

теперь будем окаймлять минор М1, т.е. будем строить всевозможные миноры 2-ого порядка, ктр. содержат в себе i-тую строку и j-тый столбец, до тех пор, пока не найдем ненулевой минор 2-ого порядка.

М2 (i, i1, j.j1)

Дальше аналогично строим миноры 3-го порядка, окаймляющие М2 (минор), до тех пор, пока не получим минор, отличный от нуля.

Процесс будет продолжаться до одного из событий: 1. размер минора достигнет числа к.

  1. на каком-то этапе все окаймленные миноры окажутся = 0.

В обоих случаях величина ранга-матрицы будет равна порядку большего отличного от нуля минора.

Метод элементарных преобразований: как известно, понятие треугольной матрицы определяется только для квадратных матриц. Для прямоугольных матриц аналогом является понятие трапецивидной матрицы пример :

ранг = 2.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]