Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matem.docx
Скачиваний:
11
Добавлен:
21.04.2019
Размер:
203.22 Кб
Скачать
  1. Основные числовые характеристики непрерывных случайных велечин.

Числовые характеристики непрерывных случайных величин.   Пусть непрерывная случайная величина Х задана функцией распределения f(x). Допустим, что все возможные значения случайной величины принадлежат отрезку [a,b].Определение. Математическим ожиданием  непрерывной случайной величины Х, возможные значения которой принадлежат отрезку [a,b], называется определенный интеграл. Если возможные значения случайной величины рассматриваются на всей числовой оси, то математическое ожидание находится по формуле:

При этом, конечно, предполагается, что несобственный интеграл сходится.

Определение. Дисперсией непрерывной случайной величины называется математическое ожидание квадрата ее отклонения.

По аналогии с дисперсией дискретной случайной величины. Определение. Средним квадратичным отклонением называется квадратный корень из дисперсии.

  1. Равновероятностный закон распределения вероятностей.

Рассматривая вышеприведенные законы распределения случайной величины, пришлось подчеркнуть различия в их проявлении при условиях: прерывно ли распределение случайных величин или непрерывно?

Другое название этого закона – равномерное, или прямоугольное распределение, несет в себе больше информации о кривой этого закона. Вероятность наступления случайного события А на рассматриваемом промежутке одинакова в любой точке из промежутка[в; с]. Для Р/Р плотность 

где в, с – параметры З/Р/Р.

Функция распределения для З/Р/Р имеет вид: где в, с – параметры З/Р/Р.

 

  1. Биноминальный закон распределения вероятностей.

Биноминальное распределение - это распределение вероятностей возможных чисел появления события А при n независимых испытаниях, в каждом из которых событие А может осуществиться с одной и той же вероятностью Р(А) = р = const. Кроме события А может произойти также противоположное событие Ā, вероятность которого Р(Ā) = 1 - р = q.

Вероятности любого числа событий соответствуют членам разложения бинома Ньютона в степени, равной числу испытаний:

где pn - вероятность того, что при n испытаниях событие А наступит n раз;

qn - вероятность того, что при n испытаниях событие А не наступит ни разу;

- вероятность того, что при n испытаниях событие А наступит m раз, а событие Āнаступит n-m раз;

число сочетаний (комбинаций) появления события А и Ā.

Числовые характеристики биноминального распределения:

М(m)=np - математическое ожидание частоты появления события А при n независимых испытаниях;

D(m)=npq - дисперсия частоты появления события. А;

- среднее квадратическое отклонение частоты.

  1. Экспоненциальный закон распределения вероятностей.

Экспоненциальное или показательное распределение — абсолютно непрерывное распределение, моделирующее время между двумя последовательными свершениями одного и того же события.

Случайная величина X имеет экспоненциальное распределение с параметром λ > 0, если её плотность имеет вид

.

Пример. Пусть есть магазин, в который время от времени заходят покупатели. При определённых допущениях время между появлениями двух последовательных покупателей будет случайной величиной с экспоненциальным распределением. Среднее время ожидания нового покупателя (см. ниже) равно 1 / λ. Сам параметр λ тогда может быть интерпретирован, как среднее число новых покупателей за единицу времени.

В этой статье для определённости будем предполагать, что плотность экспоненциальной случайной величины X задана первым уравнением, и будем писать: X∼Exp(λ).

Функция распределения

Интегрируя плотность, получаем функцию экспоненциального распределения:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]