
- •Основные понятия теории вероятности.
- •Непосредственный подсчет вероятностей.
- •1. Полная группа событий.
- •2. Несовместимые события.
- •3. Равновозможные события.
- •Теоремы сложения вероятностей. Теорема сложения вероятностей несовместных событий
- •Теорема сложения вероятностей совместных событий
- •Теоремы умножения вероятностей Теорема умножения вероятностей
- •Теорема Байеса
- •«Физический смысл» и терминология
- •Следствие
- •Основные числовые характеристики дискретных случайных величин.
- •Основные числовые характеристики непрерывных случайных велечин.
- •Равновероятностный закон распределения вероятностей.
- •Биноминальный закон распределения вероятностей.
- •Экспоненциальный закон распределения вероятностей.
- •Нормальный закон распределения вероятностей.
- •13 Проверка статистической гипотезы о равенстве средних значений. Проверка статистических гипотез о равенстве средних
- •Формулировка гипотезы
- •14. Проверка статистической гипотезы о законе распределения.
- •15. Проверка статистической гипотезы об однороности дисперсий
- •16. Проверка статистической гипотезы о статистической взаимосвязи
- •17. Корреляционный анализ. Виды уравнений регрессии.
- •18. Расчет параметров уравнения регрессии
- •Оценка качества регрессионной модели
- •19. Проверка гипотезы об адекватности.
- •20. Линейная однофакторная регрессионаая модель
- •21. Степенная регрессионная модель
Теорема сложения вероятностей совместных событий
Два события называются совместными, если появление одного из них не исключает появления другого в одном и том же опыте.
Пример. Поступление
в магазин одного вида товара — событие
.
Поступление второго вида товара —
событие
.
Поступить эти товары могут и одновременно.
Поэтому
и
-
совместные события.
Теорема. Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления
P(A+B) = P(A) + P(B) — P(AB). (2.5)
Доказательство. Событие
наступит,
если наступит одно из трех несовместных
событий
,
,
.
По теореме сложения вероятностей
несовместных событий имеем
(2.6)
Событие
произойдет,
если наступит одно из двух несовместных
событий:
,
.
Вновь применяя теорему сложения
вероятностей несовместных событий,
получаем
.
Откуда
(2.7)
Аналогично
для события
Откуда
.(2.8)
Подставив (2.7) и (2.8) в (2.6), находим
P(A+B) = P(A) + P(B) — P(AB).
Пример. Если вероятность поступления в магазин одного вида товара равна P(A) = 0,4, а второго товара — P(B) = 0,5, и если допустить, что эти события независимы, но совместны, то вероятность суммы событий равна
P(A+B) = 0,4 + 0,5 — 0,4×0,5 = 0,7.
Теоремы умножения вероятностей Теорема умножения вероятностей
Теорема. Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое имело место
P(AB) = P(A)×P(B/A) = P(B)×P(A/B). (2.2)
Доказательство. Предположим,
что из
всевозможных
элементарных исходов
событию
благоприятствуют
исходов,
из которых
исходов
благоприятствуют событию
.
Тогда вероятность события
будет
,
условная вероятность события
относительно
события
будет
.
Произведению событий и благоприятствуют только те исходы, которые благоприятствуют и событию и событию одновременно, т.е. исходов. Поэтому вероятность произведения событий и равна
.
Умножим числитель и знаменатель этой дроби на . Получим
.
Аналогично доказывается и формула
.
Пример. На склад поступило 35 холодильников. Известно, что 5 холодильников с дефектами, но неизвестно, какие это холодильники. Найти вероятность того, что два взятых наугад холодильника будут с дефектами.
Решение. Вероятность того, что первый выбранный холодильник будет с дефектом, находится как отношение числа благоприятствующих исходов к общему числу возможных исходов
P(A) = 5/35 = 1/7.
Но после того, как был взят первый холодильник с дефектом, условная вероятность того, что и второй будет с дефектом, определяется на основе соотношения
Искомая вероятность будет
.
Если при наступлении события вероятность события не меняется, то события и называются независимыми.
В случае независимых событий вероятность их произведения равна произведению вероятностей этих событий
P(AB) = P(A)×P(B). (2.3)
Теорема умножения вероятностей легко обобщается на любое конечное число событий.
Теорема. Вероятность произведения конечного числа событий равна произведению их условных вероятностей относительно произведения предшествующих событий, т.е.
P(ABC....LM) = P(A)×P(B/A)×P(C/AB) P(M/AB...L). (2.4)
Для доказательства этой теоремы можно использовать метод математической индукции.