Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на билеты по матиматике 1-30.docx
Скачиваний:
23
Добавлен:
17.04.2019
Размер:
380.41 Кб
Скачать

7)Система линейных уравнений: матричная форма, совместность, определенность. Теорема Кронекера-Капелли.

Система линейных уравнений может быть представлена в матричной форме как:

или:

Ax = B.

Если к матрице А приписать справа столбец свободных членов, то получившаяся матрица называется расширенной.

Теорема (правило) Крамера

Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём

Доказательство. Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение – на A21 и 3-е – на A31:

Сложим эти уравнения:

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца.

Далее рассмотрим коэффициенты при x2:

Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.

8) Матричный метод решения систем линейных уравнений. Формулы Крамера.

Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными [2]:

Фо-ы крамера

т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде

или короче AX=B.

Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т. к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением.

Пусть определитель матрицы отличен от нуля |A| ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A-1, обратную матрице A:.

Поскольку A-1A = E и EX = X, то получаем решение матричного уравнения в виде X = A-1B.

Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных. Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A-1B.

9) Метод Гаусса.

Этот метод решения систем линейных уравнений пригоден для решения систем с любым числом уравнений и неизвестных.Суть метода Гаусса заключается в преобразовании заданной системы уравнений с помощью элементарных преобразований в эквивалентную систему ступенчатого треугольного вида.Полученная система содержит все неизвестные в первом уравнении. Во втором уравнении отсутствует первое неизвестное, в третьем уравнении отсутствуют первое и второе неизвестные и т. д.Если система совместна и определена (единственное решение), то последнее уравнение содержит одно неизвестное. Найдя последнее неизвестное, из предыдущего уравнения находим еще одно - предпоследнее. Подставляя полученные величины неизвестных, мы последовательно найдем решение системы.Элементарными преобразованиями системы линейных уравнений, используемыми для приведения системы к треугольному виду, являются следующие преобразования:  - перестановка местами двух уравнений;  - умножение обеих частей одного из уравнений на любое число, отличное от нуля;  - прибавление к обеим частям одного уравнения соответствующих частей другого уравнения, умноженных на любое число.Элементарные преобразования переводят данную систему линейных алгебраических уравнений в эквивалентную систему Две системы называются эквивалентными, если всякое решение первой системы является решением другой системы и наоборот.

Пример 1. Решить систему  методом Гаусса.

Проверка:   Получили три тождества.