Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1Геометрична інтерпретація задачі лінійного про....doc
Скачиваний:
10
Добавлен:
17.04.2019
Размер:
1.43 Mб
Скачать

72. Сфомолювати основну ідею симплекс методу.

72. Графічний метод для визначення оптимального плану задач лінійного програмування доцільно застосовувати лише для задач із двома змінними. За більшої кількості змінних необхідно застосовувати інший метод. З властивостей розв’язків задачі лінійного програмування відомо: оптимальний розв’язок задачі має знаходитись в одній з кутових точок багатогранника допустимих розв’язків. Тому найпростіший спосіб відшукання оптимального плану потребує перебору всіх кутових точок (допустимих планів задачі, які ще називають опорними). Порівняння вершин багатогранника можна здійснювати тільки після відшукання якоїсь однієї з них, тобто знайшовши початковий опорний план. Кожний опорний план визначається системою m лінійно незалежних векторів, які містяться в системі обмежень задачі з n векторів  . Отже, загальна кількість опорних планів визначається кількістю комбінацій  . Задачі, що описують реальні економічні процеси, мають велику розмірність, і простий перебір всіх опорних планів таких задач є дуже складним, навіть за умови застосування сучасних ЕОМ. Тому необхідне використання методу, який уможливлював би скорочення кількості обчислень. 1949 року такий метод був запропонований американським вченим Дж. Данцігом — так званийсимплексний метод, або симплекс-метод.

Ідея цього методу полягає в здійсненні спрямованого перебору допустимих планів у такий спосіб, що на кожному кроці здійснюється перехід від одного опорного плану до наступного, який за значенням цільової функції був би хоча б не гіршим за попередній. Значення функціонала при переході змінюється в потрібному напрямку: збільшується (для задачі на максимум) чи зменшується (для задачі на мінімум).

Процес розв’язання задачі симплекс-методом має ітераційний характер: однотипні обчислювальні процедури (ітерації) повторюються у певній послідовності доти, доки не буде отримано оптимальний план задачі або з’ясовано, що його не існує.

Отже, симплекс-метод — це ітераційна обчислювальна процедура, яка дає змогу, починаючи з певного опорного плану, за скінченну кількість кроків отримати оптимальний план задачі лінійного програмування.

73.Сформулювати першу основну теорію повійності.

Теорема (перша теорема двоїстості). Якщо одна з пари спряжених задач має оптимальний план, то й друга задача також має розв’язок, причому для оптимальних розв’язків значення цільових функцій обох задач збігаються, тобто

.

Якщо цільова функція однієї із задач необмежена, то спряжена задача також не має розв’язку*1.

*1: {Зауважимо, що коли одна із задач не має допустимого розв’язку, то двоїста до неї задача також може не мати допустимого розв’язку, тобто зворотне твердження щодо другої частини теореми в загальному випадку не виконується.}

Доведення. Допустимо, що початкова задача (3.1)—(3.3) має оптимальний план, який отриманий симплексним методом. Не порушуючи загальності, можна вважати, що останній базис складається з перших m векторів  . Остання симплексна таблиця має вигляд:

Позначимо через D матрицю, що утворена з компонент векторів А1, А2,…, Аm останнього базису в першій симплексній таблиці.

Для оптимального плану отримаємо:

 (3.12)

де В — вектор, що складається з вільних членів системи обмежень.

Звідси:

 (3.13)

Симплексна таблиця 3.1 містить коефіцієнти розкладу векторів   початкової системи обмежень задачі за векторами базису, тобто кожному вектору з системи обмежень задачі (3.1)—(3.3) Аj відповідає в симплексній таблиці вектор  , такий що

 (3.14)

Позначимо через   матрицю, що складається з коефіцієнтів розкладу векторів    . Тоді буде справджуватися рівність:

,

звідки

. (3.15)

Враховуючи (3.13), значення оптимального плану даної задачі знаходиться у вигляді:

де  , причому

,

тобто всі компоненти вектора   є оцінками оптимального плану задачі (3.1)—(3.3), а тому

. (3.16)

Оскільки оптимальний план початкової задачі подано у вигляді  , то за правилами побудови двоїстої задачі можна допустити, що її оптимальний план матиме вигляд:

. (3.17)

Доведемо, що   дійсно є оптимальним планом двоїстої задачі.

Система обмежень двоїстої задачі у векторно-матричній формі матиме вигляд:

.

Підставимо в цю нерівність значення  . Тоді, враховуючи (3.15), (3.16) та (3.17), отримаємо:

.

Звідки:  . Отже,   задовольняє систему обмежень (3.5) двоїстої задачі, тому є допустимим планом задачі (3.4)—(3.6).

Для даного плану значення функціонала дорівнюватиме:

, (3.18)

де  . Підставимо в (3.18) значення   з (3.17) та, враховуючи (3.13), матимемо:

. (3.19)

Доведено, що   збігається зі значенням оптимального плану початкової задачі.

Отже, за лемою 3.2 (достатня умова оптимальності плану задачі лінійного програмування) план   є оптимальним планом двоїстої задачі (3.4)—(3.6).

Аналогічно доводиться, що коли двоїста задача має розв’язок, то початкова також має розв’язок і виконується рівність:

.

Для доведення другої частини теореми допустимо, що лінійна функція початкової задачі необмежена зверху. Тоді з нерівності   маємо, що  , що не має змісту. Отже, двоїста задача в даному разі не має розв’язків.

Доведена теорема дає змогу в процесі розв’язування однієї задачі водночас знаходити план другої.

Економічний зміст першої теореми двоїстості. Максимальний прибуток (Fmax) підприємство отримує за умови виробництва продукції згідно з оптимальним планом  , однак таку саму суму грошей ( ) воно може мати, реалізувавши ресурси за оптимальними цінами  . За умов використання інших планів     на підставі основної нерівності теорії двоїстості можна стверджувати, що прибутки від реалізації продукції завжди менші, ніж витрати на її виробництво.

77.Умова нерозв’язності у методі штучн.баз. Припускається, що величина М є досить великим числом. Тоді якого б малого значення не набувала відповідна коефіцієнту штучна змінна , значення цільової функції буде від’ємним для задачі на максимум та додатним для задачі на мінімум і водночас значним за модулем. Тому процедура симплексного методу одразу вилучає відповідні змінні з базису і забезпечує знаходження плану, в якому всі штучні змінні .

Якщо в оптимальному плані розширеної задачі існує хоча б одне значення , то це означає, що початкова задача не має розв’язку, тобто система обмежень несумісна

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]