
- •1.Матрица – прямоугольная таблица чисел, содержащая m строк одинаковой длины(или n столбцов одинаковой длины).
- •2.Умножение матрицы на число
- •3.Умножение матриц
- •2 Матр а и в соглас-е, если число строк матр а равно числу столбцов матр в, и наоборот.
- •9. Система m-линейных ур-й с n неизв-ми. Матричная запись системы. М-д обр матрицы. М-д Крамера.
- •10. Метод Гаусса. Эквив преобраз-я систем. Базисные и своб неизвестные. Критерий совместности.
- •Перестановка уравнений системы.
- •По исх сист записываем расшир матр системы.
- •Amn ≠ 0 – система имеет единственное решение
- •11. Системы линейных однородных уравнений.
- •13.Вектор на плоскости и в простр-ве. Лин опер-и над в-ми, их св-ва. Базис на пл-ти и в простр-ве. Ортонормированный базис.
- •21.Уравнение прямой-уравнение, которому удовлетворяют координаты любой точки этой и только этой прямой.
- •23.Углом между двумя прямыми называется любой из двух углов, образованных прямыми при их пересечении.
- •25.Расстояние от точки до прямой
- •26,27.Окружность
- •28.Гипербола, ее характеристики, геометрические свойства
- •29.Где идут буквы с нулями-это значит,например x0,только в уменьшенном варианте где s,n-это вектора ,сверху палочку подрисуйте¯; √- этот корень всегда доводите до конца выражения
- •30.Плоскость.Условие параллел-ти и перпендик-ти
- •1 Из спос-в зад-я пл-ти через зад точку m0(x0,y0,z0) с заданным нормальным вектором n(a;b;c)
- •31.Расстояние от точки до плоскости.Угол между плоскостями
- •32.Пр линия в пр-ве.Параметрич ур-е прям.Канонич ур-е пр
- •36.Предел числовой последовательности (чп).
- •X1, x2,…xn,…-числ послед.(1), xn-общ член чп.
- •37.Понятие ф-и. Сп-бы задания ф-й, оп-ции над ними. Обр ф-ия. Элемент ф-ии, их классификация.
- •39.Осн теоремы о пределах. Замечат пределы.
- •40.Непрерывность функции в точке. Точки разрыва и их классификация.
- •1)Первая теорема Вейерштрасса
- •2) Вторая теорема Вейерштрасса
- •3) Теорема Больцано-Коши о промежут.Значении
- •43.Произв. Ф-ции. Геометр., механ., экон. Смысл произ-ной. Эласт-сть ф-ции, ее экон приложение.
- •45.Производная показательной неявной функции. Производные высших порядков:
- •47.Теорема Лагранжа. Правило Лопиталя.
- •55.Понятие функции многих переменных
- •56.Пределы и непрерывность ф-ций двух переменных
- •57.Частные производные первого и второго порядка
- •58.Полный дифференциал функции 2-х переменных и его приложения
- •2) , Экстр-ма в т. Нет
- •3) , Треб-ся доп исслед-е
- •1) Выбор точки ; 2) устан-ть вид вычисл-мой ф-и
- •2) , Экстр-ма в т. Нет
- •3) , Треб-ся доп исслед-е
- •62.Наибольшее и наименьшее значение функции 2-х переменных
- •1 Из алгоритмов реш-я этой задачи сводится к след
- •II этап
- •64,65.Неопред интеграл, первообразная и их св-ва.
- •67.Интегрир-е путем замены переменной(подстановкой)
- •72.Определенный интеграл с переменным верхним пределом
- •73.Формула Ньютона-Лейбница (вывод)
- •74.Интегрирование по частям и замена переменной в определенном интеграле
- •2)Определение средних значений
- •Издержек производства
- •2)И. На конечном промежутке
- •82.Дифференциальное уравнение(ду)
- •83.Ду 1го порядка
- •2)Имеет частную произв-ю по y для любой точки
- •92,93Лин неоднор ду 2-го порядка с пост коэфф-ми.
- •94.Числовой ряд и его сходимость.
- •2.Сумма ряда. Примеры сходящихся и расходящихся рядов. Гармонический ряд (док-во его расходимости).
- •96.Свойства сходящихся рядов
- •97.Достат признаки сх-ти ряда с положит членами.
- •98. Признаки сравнения рядов
- •101.Теорема Абеля.
- •103.Свойства степенных рядов .
- •2) Степенной ряд можно дифференцировать бесконечное число раз.
- •3) На произвольные функциональные ряды данная теорема без специальных предположений не распространяется.
- •104.Ряды Тейлора и Маклорена.
- •105.Разложение некоторых елементарных ф-ций в степенные ряды
- •106.Применение рядов в приближенных вычислениях. Оценка точности вычислений
- •99. Знакочеред ряды. Достат усл-е сх-ти (теорема Лейбница). Абсол и условная сходимость.
- •Определение опред. Интеграла
98. Признаки сравнения рядов
1-й признак сравнения:
Пусть
(1)
и
(2)
с неотриц членами. Тогда если вып-ся
нер-во
начиная с некот n, то если ряд 2 сх-ся, то
и ряд 1 сх-ся, а если ряд 1 расх-ся, то и
ряд 2 расх-ся.
2-й признак сравнения:
Пусть
заданы ряд (1) и (2), члены кот положит и
сущ
,
0<l<∞.
Тогда эти ряды (1), (2) одновр-но сх-ся или
расх-ся.
101.Теорема Абеля.
1)
Если степенной ряд
anxn
сходится при x=x0,
то он сходится причем абсолютно для
всех x
, удовлетворяющих неравенству |x|<|x0|
2) Если же ряд anxn расходится при x=x1 , то он расходится при всех x , удовлетворяющих условию |x|>|x1|
Док-во (основано на свойствах последовательностей).
1)Так
как числовой ряд
anx0n
сходится,
то
anx0n
=0. Это означает, что числовая
последовательность {anx0n}
ограничена.Тогда перепишем степенной
ряд в виде
a0 + a1x0 (x/x0) + a2x02(x2/x02) +…+…= anx0n (x/x0)2
Рассмотрим ряд из абсолютных величин.
|a0| + |a1x0 (x/x0) | + |a2x02(x2/x02) | +…+…<= M + M| x/x0| + M| x/x0|2 +…= M(1+q+ q2+…)
Это геометрическая прогрессия с q=(x/x0)<1—сходится. Из признака сравнения следует абсолютная сходимость степенного ряда.
2) 2-ая часть теоремы. От противного. Пусть степенной ряд сходится при некотором x*, | x*|> x1. Но тогда согласно 1-ой части теоремы, степенной ряд сходится для всех | x |< x* . В том числе должен сходится
и при x= x0, так как | x |< | x*| . Но это противоречит
предположению теоремы. Теорема доказана.
102.Инт-л, радиус и область сх-ти степенного ряда.
Из т-мы Абеля следует, что для любого степ ряда найдется такое неотриц число , R наз радиусом сх-ти, что при всех x, | x |< R , ряд сх-ся, а при всех x, | x |> R , ряд расходится.
Интервал (-R;R) наз интервалом сх-ти степ ряда .
Заметим, что для x €(-R;R) ряд сходится абсолютно, а в точках x= ± R степенной ряд может сходиться или расходиться.
Как найти радиус сходимости R? Для этого можно воспольз-ся, напр, признаками Даламбера или Коши.
Теорема. Если существует | an+1/ an|=L, то R=1/L= | an/ an+1|
Док-во. Рассмотрим ряд anxn . Применим к нему признак Даламбера.
| an+1xn+1/ anxn|= | an+1/ an|∙| x | =L∙| x |
Отсюда следует, что если L∙| x |<1, т,е. если | x |<1/L , то ряд сходится абсолютно. Если L∙| x |>1, то ряд расходится. Теорема доказана.
Заметим, что если L=0, для любого | x | то R=∞ .
Если L=∞, для любого x≠0 , то R=0 . Если R=0 , то ряд сходится в единственной точке x0=0; если R=∞, то ряд сходится на всей числовой прямой.
Итак, интервал сходимости ряда anxn есть (-R;R) . Для нахождения области сходимости ряда надо отдельно исследовать сходимость в точках x=R и x=-R; в зав-ти от рез-тов этого исслед-я обл-ю сх-ти ряда м. б. один из промежутков: [-R;R],(-R;R),[-R;R),(-R;R]
103.Свойства степенных рядов .
Пусть функция S(x) есть сумма степенного ряда
S(x)= anxn ,x €(-R;R) .
Какие свойства функции S(x)?
Теорема. Функция S(x) является дифференцируемой на интервале сходимости x €(-R;R) . Причем ее производная S’(x) может быть найдена почленным дифференцированием членов ряда .
S’(x) = (a0 + a1x + a2x2+…+ anxn +…)’= a1 + a2x+…+ anxn-1 +…
при этом радиус сходимости полученного ряда равен R.Кроме того, степенной ряд можно почленно интегрировать.
Замечание. 1) При дифференцировании интервал сходимости (-R;R) остается неизменным. Однако ситуация в точках x= ±R может не совпадать с ситуацией, которая имеет место в исходном степенном ряде.