Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Final.doc
Скачиваний:
3
Добавлен:
17.04.2019
Размер:
2.13 Mб
Скачать

45.Производная показательной неявной функции. Производные высших порядков:

Производная показательной функции:

При для любого х

Производная неявной функции:

При вычислении производной неявной функции воспользуемся правилом дифференцирования сложной функции. Продифференцируем уравнение . Отсюда получим формулу для производной функции , заданной неявно: = . Таким же способом нетрудно получить формулы для частных производных функции нескольких переменных, заданной неявно, например, уравнением :

, .

Производные высших порядков:

Если f '(x) — производная функции f (x), то производная от нее по независимой переменной x, (f '(x))' = f ''(x), называется производной второго порядка. Аналогично определены производные 3-го, 4-го, , и т.д, n-го порядка: f''' (x) = ( f'' (x))' , f (4)(x) = (f''' (x))' , f (n)(x) = (f (n -1)(x))'

47.Теорема Лагранжа. Правило Лопиталя.

Теорема Лагранжа:

Т-ма: Пусть задана ф-я и пусть она: 1) опр-на и непрер на ; 2) имеет кон произв-ю на . Тогда найдётся такая т. с (a<c<b), что вып-ся рав-во

Док-во: Введём вспомогат функцию

Она удовл-т всем условиям теоремы Ролля. Действительно, F(x) опред-на и непрер на , ,

,

т.е. сущ на . След-но, найдётся точка с (a<c<b), такая, что F’(c) = 0, т.е.

или

Тогда ∆

Правило Лопиталя:

Пусть ф-и f(x) и g(x) одновр явл либо бескон б-ми, либо беск-но малыми в т. . Тогда при выч-и пределов при x → для раскрытия неопред-тей вида или удобно применить пр. Лопиталя :

,

Неопределенности вида 0 · ∞, ∞ – ∞, , , часто удается свести к неопределенностям вида или с помощью различных преобразований.

55.Понятие функции многих переменных

Пусть имеется n-перем-х и каждому х1, х2… хn из нек-го множ-ва х поставлено в соответствие опред. число Z, тогда на множ-ве х задана ф-ция Z=f1, х2… хn) многих переменных.

Х – обл-ть опред-я ф-ции

х1, х2… хn – независ-е переем-е (аргументы)

Z – ф-ция Пример: Z=П х212 (Объем цилиндра)

Рассм-м Z=f(х;у) – ф-цию 2-х перем-х (х1, х2 замен-ся на х,у). Рез-ты по аналогии переносятся на др. ф-ции многих перем-х. Обл-ть опред-я ф-ции 2-х перем-х – вся корд пл-ть (оху) или ее часть. Мн-во знач-й ф-ции 2-х перем-х – поверх-ть в 3х-мерном простр-ве.

Приемы построения графиков: - Рассм-т сечение поверх-ти пл-тями || координатным пл-тям.

Пример: х = х0, зн. пл-ть Х || 0уz у = у0z Вид ф-ции: Z=f0,y); Z=f(x0)

Например: Z=x2+y2-2y

Z= x2+(y-1)2-1 x=0 Z=(y-1)2-1 y=1 Z= x2-1 Z=0 x2+(y-1)2-1

Парабола окруж-ть(центр(0;1)

56.Пределы и непрерывность ф-ций двух переменных

Пусть задана Z=f(х;у), тогда А – предел ф-ции в т.(х0,y0), если для любого сколь угодно малого положит. числа E>0 сущ-т полож-е число б>0, что для всех х,у удовл-щих |x0|<б; |y-y0|<б выполняется нерав-во |f(x,y)-A|<E

Z=f(х;у) непрерывна в т.(х0,y0), если: - она опред-на в этой т.; - имеет конеч. предел при х, стрем-ся к х0 и у к у0; - этот предел = знач-ю

ф-ции в т.(х0,y0), т.е. limf(х;у)=f0,y0)

Если ф-ция непрерывна в кажд. т. мн-ва Х, то она непрерывна в этой области

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]