Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электричество и электрическая ж.д..doc
Скачиваний:
4
Добавлен:
17.04.2019
Размер:
1.67 Mб
Скачать

14. Сила тока тяговых двигателей

1. Источником тока на электрической железной дороге является тяговая подстанция. Передача электроэнергии от подстанции к электровозу производится с помощью контактной сети. Контактная сеть состоит из контактного провода и рельсов (рис. 14.1).

К положительному выводу через быстродействующий выключатель подсоединяется контактный провод, к отрицательному выводу – заземление. При этом создаётся катодная защита рельсов от электрохимической коррозии в растворе почвенных вод, а коррозирует металл заземления. Для увеличения силы тока параллельно контактному проводу располагают дополнительно питающий провод большого сечения. Электрический ток, снимаемый от контактного провода токоприемником электровоза, приводит в действие тяговые двигатели и другие аппараты и стекает на рельс. Так как рельсы не изолированы от земли, то обратно на подстанцию ток течет как по рельсам, так и по земле на заземление и от заземления по отсасывающему проводу возвращается на отрицательный вывод подстанции. Контактный провода подвешивают на струнах к стальному тросу подвески, чтобы меньше был изгиб провода.

Сопротивление контактной сети состоит из сопротивления контактного провода и сопротивления рельсов и грунта. Сопротивление провода можно рассчитать по формуле . Здесь ρ=1,710-8 Ом∙м. Сопротивление рельсов и грунта зависит от многих факторов. Оценочно принимают ρрельс = 0,025 Ом/км. Электрическая цепь электрической железной дороги представляет собой подстанцию, как источник тока, включенную через контактную сеть на электродвигатель, который является источником противо-ЭДС.

Для электрической железной дороги выполняется закон Ома. Напряжение подстанции равно сумме противо-ЭДС двигателей и потере напряжения на проводах контактной сети и обмоток двигателя:

. 14.1

Умножив уравнение закона Ома на силу тока, получим уравнение баланса мощности

. 14.2

Мощность, развиваемая тяговой подстанцией UJ, расходуется на создание механической мощности двигателей P=εJ и на мощность тепловых потерь J2(Rкс+r).

3 . Определить силу тока в контактной сети непосредственно по уравнению закона Ома невозможно. Это обусловлено тем, что противо-ЭДС не постоянна, а зависит от индукции магнитного поля В, создаваемой током обмотки возбуждения, . Значит, в двигателях последовательного возбуждения ЭДС как и индукция будет зависеть от силы тока (рис. 14.2).

Возможно графическое решение уравнения закона Ома. Пусть для простоты двигатели электровоза при равномерном движении вращаются с постоянной угловой скоростью ω. Проведем на графике (14.2) прямые линии . Абсциссы точек пересечения с линией ЭДС дадут расчетное значение силы потребляемого тока. Так как сопротивление контактной сети зависит от расстояния между подстанцией и электровозом l >0, то с удалением от подстанции угол наклона линии будет возрастать, точка пересечения будет смещаться в диапазон малых токов. Определив силу тока, можно определить мощность тяговых двигателей как площадь прямоугольника (εJ) на графике

2. На стадии проектирования электровоза силу потребляемого тока можно рассчитать по заданной мощности тяговых двигателей. Зависимость полезной мощности тяговых двигателей от силы тока имеет максимум (рис.14.3). Приравняв первую производную к нулю , получим значение силы тока, при котором полезная мощность максимальна . Однако работать в этом режиме тяговые двигатели не должны, так как коэффициент полезного действия подстанции равен 50 %.

Р ешая квадратное уравнение баланса мощности, подставив в него Jmax и приведя к виду можно определить потребляемую им силу тока. Это уравнение второго порядка относительно силы тока и его решение имеет два корня. Если корни действительны и положительны, то выбирают меньший ток J1. Если корни мнимые, то тяговая подстанция не в состоянии обеспечить заданную мощность тяговых двигателей локомотива из-за большого сопротивления контактной сети.

. (14.3)

Однако на рассчитанное предельное значение силы тока тяговых двигателей накладываются несколько ограничений, которые нельзя превышать. Сила тока не может быть настолько большой, чтобы ведущие колеса локомотива буксовали (см. формулу 13.1). Необходимо, чтобы КПД подстанции был не менее 95%, чтобы не перегревались двигатели, контактный провод.

3. Потребуем, чтобы КПД тяговой подстанции был не менее η=95%, то есть тепловые потери не превышали 5% от потребляемой мощности. По закону Джоуля –Ленца мощность тепловых потерь равна произведению квадрата силы тока на сопротивление . Отсюда допустимая сила тока по ограничению потерь мощности равна

. 14.4

Исключим силу тока по соотношению . Мощность тепловых потерь будет равна

(14.5)

Как видно из формулы, для снижения тепловых потерь, следует, во-первых, уменьшать сопротивление проводов контактной сети. По формуле нужно увеличить площадь сечения, но это приведёт к утяжелению проводов, удорожанию контактной сети. Или следует уменьшать длину контактного провода, то есть уменьшать расстояние между подстанциями.

Во-вторых, можно повысить напряжение контактной сети. Например, при повышении напряжения тяговой подстанции в два раза, сила тока уменьшится в два раза, а тепловые потери в четыре раза при постоянном сечении проводов. Поэтому существуют предложения повысить напряжение в контактной сети постоянного тока вместо 3 кВ до 6 кВ и даже до 12 кВ. По этой же причине применяется контактная сеть переменного тока с напряжением 25 и 50 кВ.

Определим сопротивление контактного провода между ближайшими подстанциями при заданной мощности электровоза Р. Решая уравнение баланса мощности относительно сопротивления контактного провода, получим

. (14.6)

По этой формуле при мощности двигателей в несколько МВт величина сопротивления контактной сети должна составлять 0,2–0,3 ом. Тогда расстояние между подстанциями при площади сечении провода 200 мм2 будет около 20 км.

4. Ограничение силы тока по нагреву двигателей. В процессе работы электродвигатели нагреваются вследствие выделения теплоты на активном сопротивлении обмоток возбуждения и обмоток якоря и потерь на гистерезис при перемагничивании железа якоря. Это может привести к перегреву двигателя. Теплота, выделяемая за некоторое малое время, dQ = J2r dt , расходуется на теплоотдачу окружающей среде и нагрев двигателя.

Нагрев приводит к повышению температуры двигателя аккумулированной теплотой . Здесь m – масса двигателя, с – удельная теплоемкость материала (в основном это сталь), dT– повышение температуры. Теплоотдача окружающей среде пропорциональна площади теплоотдающей поверхности двигателя S и перепаду температур (Т-Т0) между поверхностью двигателя и окружающей средой: dQотд = α S (TT0 ) dt. Здесь α – коэффициент теплоотдачи, зависящий от способа теплоотдачи. Запишем уравнение теплового баланса

(14.7)

Произведем расчет температуры двигателя в зависимости от времени работы. Пусть сила тока постоянна. Разделим в дифференциальном уравнении (14.7) переменные: время t и температуру T. В результате получим . Проинтегрируем обе части уравнения в пределах: по времени от нуля до текущего момента t, по температуре от начальной Т0 до текущей температуры Т . Подставим пределы интегрирования и потенцируя, получим зависимость температуры корпуса двигателя от времени

(14.8)

Температура корпуса растет со временем по экспоненциальному закону (рис.14.4). Скорость роста определяется коэффициентом показателя экспоненты . Это так называемое время релаксации. Чем больше масса и удельная теплоемкость двигателя, тем дольше по времени нарастает температура. В пределе, при бесконечно долгом времени работы температура стремится к равновесному значению. При этом температура корпуса становится предельной, а вся подводимая теплота рассеивается в пространство

. (14.9)

Существует допустимая температура эксплуатации тяговых двигателей. Она ограничивает допустимое время работы двигателя. Чем выше сила тока, тем меньше допустимое время работы двигателя (рис. 14.5). Поэтому для увеличения длительности безопасной работы двигателя, чтобы доехать без остановки до следующей станции, приходится ограничивать силу потребляемого тока и мощность двигателей. Существует понятие «часовой режим» при котором в течении часа не допускается перегрева двигателей. По этому режиму определяется номинальная, паспортная мощность тяговых двигателей и допустимая сила тока.

Все рассчитанные значения силы тока при различных видах ограничения не должны быть меньше, чем сила тока по формуле (14.3), обеспечивающая заданную мощность тяговых двигателей. Но превышение не должно быть большим.

15. ВЫСОКОСКОРОСТНОЙ НАЗЕМНЫЙ ТРАНСПОРТ

1. Развитие наземного транспорта идет в направлении повышения безопасности движения и увеличения скорости движения. Повышение безопасности движения возможно при применении систем автоматического управления движением, созданием более безопасных локомотивов, вагонов и модернизации рельсового пути. Для увеличения скорости движения экипажей высокоскоростного наземного транспорта (ВСНТ) нужны новые физические подходы при создании силы тяги и уменьшении силы сопротивления движению.

При повышенной скорости движения возрастают, прежде всего, силы аэродинамического сопротивления. Аэродинамическая сила сопротивления пропорциональна квадрату скорости: . Плотность воздуха ρ понизить невозможно, за исключением движения экипажа в вакуумной трубе. Поэтому, во-первых, стали придавать поездам, скорость которых превышает 200 км/ч, обтекаемую форму как самолетам. Коэффициент аэродинамического сопротивления поезда в форме вытянутой капли Сх ≈ 0,1, меньше примерно в пять раз по сравнению с обычным поездом.

Во-вторых, следует устранить механический контакт между экипажем и рельсовым путем, устранив тем самым силу сопротивления при качении колес. Чтобы приподнять экипаж над дорожным полотном, можно применить воздушную подушку. Но, как показывает опыт, вентиляторы, нагнетающие воздух в зазор между днищем поезда и дорожным полотном, потребляют несопоставимое с выгодой количество энергии. Кроме того, они являются источником сильного шума и поднимают облака пыли. Рассматривается способ нагнетания встречного потока воздуха под днище аэропоезда или создание вакуума между полотном эстакады и крышей экипажа. Однако проектировщики ВСНТ останавливают свой выбор на системах электромагнитной и электродинамической подвески экипажа над дорожным полотном. Подъемная сила создается за счет взаимодействия магнитного поля экипажа с проводящей шиной дорожного полотна. Применение постоянных магнитов остается под вопросом, так как невозможно регулировать их подъемную силу.

В-третьих, необходимо создать достаточную для движения силу тяги. Колесо для этой цели мало пригодно, так как создает сопротивление движению. Кроме того, сила сцепления колеса с рельсом с увеличением скорости падает. Реактивные самолетные двигатели могут развить достаточную силу тяги. Но шум и вибрация превышает допустимые нормы. Поэтому проектировщики останавливают свой выбор на электромагнитном взаимодействии экипажа и токопроводящей шины дорожного полотна. Например, на экипаже устанавливается так называемый линейный асинхронный двигатель (ЛАД). Три или более обмотки двигателя расположены вдоль экипажа и при питании от трехфазной сети переменного тока создают бегущее назад магнитное поле. Поле взаимодействует с вихревыми токами в токопроводящей шине, отталкивает их от себя, а на экипаж действует такая же сила, направленная вперед.

2. Электромагнитный подвес основан на действии силы притяжения сердечника электромагнита, установленного на экипаже, с ферромагнитным рельсом дорожного полотна (рис. 15.1). Известно, что ферромагнитные материалы, например железо, намагничиваются и притягиваются в область наиболее сильного магнитного поля.

Подъемная сила электромагнита может быть определена по уравнению связи силы с потенциальной энергией. Сила равна первой производной от энергии по координате . Установим зависимость потенциальной энергии взаимодействия электромагнита от расстояния между феррорельсом и полюсными наконечниками х (рис. 15.1). К ак известно, энергия магнитного поля определяется формулами:

. (15.1)

З десь J –– сила тока в катушке электромагнита, L –– индуктивность электромагнита, Ψ – потокосцепление.

По закону Ома для магнитной цепи электромагнита, состоящей из сердечника электромагнита, феррорельса и двух воздушных зазоров, магнитные сопротивления которых включены последовательно, магнитный поток равен отношению магнитодвижущей силы JN к сумме магнитных сопротивлений:

. (15.2)

В этой формуле магнитные сопротивления магнитопровода и феррорельса объединены и l –– средняя длина силовых линий магнитного поля (пунктир на рис 15.1). Относительная магнитная проницаемость ферромагнитных материалов достигает десятков тысяч единиц, поэтому основной вклад в магнитное сопротивление дает воздушный зазор, относительная магнитная проницаемость которого равна единице. С увеличением воздушного зазора магнитный поток и энергия магнитного поля очень быстро уменьшаются.

Определим силу притяжения якоря к полюсам электромагнита как первую производную по расстоянию х между якорем и полюсами от энергии магнитного поля (15.1): .

. (15.3)

Сила притяжения пропорциональна квадрату индукции В магнитного поля в магнитопроводе электромагнита и быстро падает с увеличением ширины зазора. Наибольшая величина силы притяжения будет при зазоре х, равном нулю. Например, при массе экипажа 10 т даже при минимальном зазоре, когда электромагниты создают поле с индукцией 1 Тл, площадь сечения магнитопроводов электромагнитов должна быть 0,12 м2. Это обуславливает слишком большую массу электромагнитов. Выход может быть найден в применении сверхпроводящих магнитов с величиной индукции магнитного поля 3–4 Тл. Но это усложнит конструкцию экипажа из-за расположения криогенной установки на экипаже для охлаждения обмоток электромагнитов.

При движении экипажа необходимо достаточно точно поддерживать определенное значение ширины зазора между полюсами электромагнита и феррорельсом, при котором сила тяжести экипажа точно скомпенсирована силой притяжения. Стоит зазору увеличиться, как экипаж днищем упадет на полотно дороги, а стоит зазору уменьшиться, как электромагниты притянутся и прилипнут к феррорельсу. Подвешивание, основанное на притяжении, оказывается неустойчивым. Нужна быстродействующая автоматика регулирования силы тока в обмотках электродвигателя для поддержания экипажа на определенной высоте подвеса. Либо применить систему электродинамического подвеса, в которой возникают силы отталкивания электромагнитов и путевой шины.

3. Линейный асинхронный двигатель (ЛАД) предназначен для создания силы тяги экипажа ВСНТ при взаимодействии бегущего магнитного поля статора с токопроводящей путевой шиной. Статор двигателя представляет собой систему из трех, шести или более электромагнитов возбуждения поля, расположенных вдоль экипажа под его дном (рис.15.3). В этом случае шина устанавливается на дорожном полотне. Возможно обратное расположение: шина устанавливается на экипаже, а на полотне дороги устанавливается большое количество катушек возбуждения, включаемых в момент прохождения над ними экипажа.

К атушки возбуждения подключены к сети трехфазного переменного напряжения. Максимум индукции магнитного поля создается сначала одной катушкой, в которой сила тока максимальная, а в соседних сила тока меньше из-за сдвига фаз, потом следующей и так далее. Таким образом, создается бегущее от головы экипажа к его хвосту магнитное поле. В режиме тяги скорость бегущего назад магнитного поля должна превышать скорость экипажа на величину скорости скольжения. При торможении – наоборот.

Когда магнитное поле со скоростью скольжения перемещается относительно путевой шины назад, в ней возбуждаются, вследствие явления электромагнитной индукции, вихревые индукционные токи. По правилу Ленца вихревые токи текут так, чтобы противодействовать перемещению магнитного поля, и значит, действовать на экипаж с силой тяги. При предельной скорости экипажа, равной скорости бегущего назад магнитного поля, магнитное поле стало бы неподвижным относительно шины, скорость скольжения стала бы равна нулю, вихревые токи и сила тяги исчезнут.

Рассмотрим более детально образование силы тяги на примере распределения магнитного поля в виде одной длины волны, которая перемещается по шине со скоростью скольжения (рис. 15.3). На самом деле при большом числе магнитов создается несколько волн, потому что больше магнитов, тем слабее краевой эффект. Представим распределение магнитного поля тяговых электромагнитов в виде четырех участков c линиями раздела a b c d e. На первом участке (ab) индукция магнитного поля возрастает, значит, вихревой ток будет на этом участке шины циркулировать по часовой стрелке. В этом случае магнитное поле вихревых токов будет направлено за чертеж, препятствуя нарастанию магнитного поля, согласно правилу Ленца. На втором участке шины (bc) магнитный поток тяговых электромагнитов уменьшается. Вихревые токи на этом участке, противодействуя уменьшению магнитного потока, будут, согласно правилу буравчика, циркулировать против часовой стрелки. На линии раздела участков b и d вихревые токи текут в одном направлении и складываются. В других местах шины, например на линии с, вихревые токи вычитаются.

С ила Ампера будет действовать на ту часть шины, где вихревые токи и индукция магнитного поля отличны от нуля, то есть на участки шины около линий раздела b и d. Сила Ампера, действующая на эти участки шины, по правилу левой руки будет направлена в сторону скорости скольжения, против направления движения экипажа. Согласно третьему закону Ньютона, на электромагниты экипажа будет действовать такая же сила тяги, направленная по ходу движения.

Если скорость скольжения бегущего магнитного поля будет направлена в сторону движения экипажа, то будет происходить торможение экипажа.

Оценим приближенно силу тяги линейного асинхронного двигателя. Пусть индукция магнитного поля распределена вдоль шины по закону

. (15.4)

Здесь хV t –– координата участка шины от головы волны, λ – длина волны магнитного поля. Она равна расстоянию между первым и седьмым электромагнитом, у которых фазы силы тока отличаются на 2π.

ЭДС электромагнитной индукции, согласно закону Фарадея, равна скорости изменения магнитного потока сквозь поверхность контура: . Заменим сплошную шину отдельными воображаемыми контурами в виде рамок, по которым циркулируют вихревые токи. На рис. 15.3 это участок между линиями bd, в котором ток циркулирует против часовой стрелки. Ширина рамки равна ширине шины b, а длина равна половине длины волны магнитного поля. Площадь рамки равна . ЭДС электромагнитной индукции в рамке, по закону Фарадея, равна . Дифференцируя уравнение магнитной индукции (15.4), получим

(15.5)

В рамке действует переменная ЭДС и течет переменный ток с циклической частотой . По закону Ома амплитуда силы переменного тока равна отношению ЭДС к полному сопротивлению рамки: , где R –– активное сопротивление, –– индуктивное сопротивление воображаемой рамки.

Согласно закону Ампера сила тяги одной рамки равна , где b – длина активного участка рамки, равная ширине шины. Подставив амплитудное значение силы тока и ЭДС из (15.5), получим для силы тяги формулу

. (15.6)

Здесь N –– число воображаемых рамок на шине или число троек тяговых электромагнитов экипажа. Сдвиг фаз между силой тока и ЭДС, , обусловлен индуктивностью рамки.

Сила тяги линейного асинхронного электродвигателя пропорциональна квадрату индукции магнитного поля и, значит, возникает проблема создания сильных магнитных полей.