Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
himia.doc
Скачиваний:
13
Добавлен:
17.04.2019
Размер:
2.01 Mб
Скачать

Вопрос 1: Ряд стандартных электродных потенциалов (ряд напряжений) и следствие из него.

Электрохимический ряд напряжений,

Металлические электроды в водном растворе электролита образуют следующий электрохимический ряд напряжений: Li, К, Rb, Ba, Sr, Ca, Na, Се, Mg, Be, Al, Ti, Mn, V, Zn, Cr, Ga, Fe, Cd, In, Tl, Co, Ni, Sn, Pb, H2, Bi, Cu, Hg, Ag, Pt, O2, Au. Для сравнения включены водородный электрод (Pt, H2[l атм] | Н+ ), потенциал которого при давлении водорода 1,01 x 105Па и термодинамической активности а ионов Н+ в водном растворе, равной 1, при всех температурах принимается равным нулю (потенциалопределяющая реакция Н+ + е 1/2Н2, где е - электрон) и кислородный электрод (потенциалопределяющая реакция О2 + 2Н2О + 4е 4ОН-).Электрохимический ряд напряжений позволяет судить о термодинамической возможности протекания тех или иных электродных процессов. Металл с более отрицательным потенциалом может вытеснять металл с менее отрицательным потенциалом из растворов его солей, растворяясь при этом. Металлы, имеющие отрицательный стандартный потенциал по сравнению с водородным электродом (так называемые электроотрицательные металлы), в растворах с не слишком большой термодинамической активностью ионов металла имеют более отрицательный потенциал, чем водородный электрод в сильнокислых растворах. Поэтому при замыкании такого электрода с водородным между ними протекает ток, металл растворяется, а на водородном электроде выделяется водород. Электроотрицательные металлы термодинамически неустойчивы в водных растворах (их наз. неблагородными металлами) и осаждаются на катоде при более отрицательном потенциале, чем потенциал выделения Н2.Металлы, потенциал которых менее положительный, чем у кислородного электрода, термодинамически неустойчивы в контакте с О2 (или воздухом) и водой. Поэтому электрохимический ряд напряжений служит для ориентировочных оценок скорости электрохимической коррозии в водных растворах при обычных температурах, а также для выбора безопасных контактных пар (гальванических пар) разнородных металлов. Если металл электроотрицательнее, чем Н2, то может идти активный коррозионный процесс. Практическая реализация электродных процессов определяется наряду с термодинамическими также и кинетическими факторами. Положение в электрохимическом ряду напряжений металлов, образующих ионы разного заряда, зависит от природы соответствующих ионов. Аналогичные ряды напряжений можно построить для неметаллических и редокс-электродов (окислит.-восстановительных).

Вопрос 2: Направление окислительно-восстановительных реакций (овр).

О направлении окислительно-восстановительных реакций можно судить по изменению энергии Гиббса системы. Кроме того, для количественной характеристики окислительно-восстановительной активности веществ, находящихся в растворах или соприкасающихся с ними, используются так называемые электродные или окислительно-восстановительные потенциалы φ.

Для реакции, протекающей в стандартных условиях, связь энергии Гиббся и электродного потенциала выражаются уравнением:

-G0 = nFφ 0

Величину φ 0 называют стандартным электродным (окислительно-восстановительным) потенциалом. Значения стандартного электродного потенциала растворенных веществ относят к растворам с концентрацией 1 моль/л, а для газообразных веществ – к 101325 Па.

Если в реакционной смеси присутствуют как исходные вещества, так и образуемые ими при протекании ОВР продукты реакции или, иначе говоря, два окислителя и два восстановителя, то направление реакции определяется тем, какой из окислителей в данных условиях в соответствии с уравнением Нернста окажется более сильным.

Особенно просто определяется направление реакции в стандартных условиях, когда все участвующие в ней вещества (частицы) находятся в своих стандартных состояниях. Более сильным в этих условиях, очевидно, оказывается окислитель той пары, которая характеризуется более высоким стандартным потенциалом.

Хотя направление реакции в стандартных условиях этим однозначно определено, мы, заранее не зная его, можем написать уравнение реакции или правильно (реакция в стандартных условиях действительно идет в принятом нами, т.е. в прямом направлении) или неправильно (реакция идет в обратном принятому нами направлении).

Любая запись уравнения ОВР предполагает определенный выбор окислителя в левой части уравнения. Если в стандартных условиях этот окислитель сильнее, реакция пойдет в прямом направлении, если нет – в обратном.

Стандартный потенциал окислительно-восстановительной пары, в которой окисленной формой является выбранный нами окислитель, назовем потенциалом окислителя φоОк, а стандартный потенциал другой пары, в которой восстановленной формой является выбранным нами восстановитель – потенциалом восстановителя φоВс.

Величину Δφо = φоОк – φоВс назовем стандартной разностью окислительно-восстановительных потенциалов.

После введения этих обозначений критерию направления реакции в стандартных условиях можно придать простой вид:

Если Δφо > 0, реакция в стандартных условиях протекает в прямом направлении; если Δφо < 0, то в обратном.

Студент должен понимать, что в действительности в стандартных условиях реакции никогда не проводят, хотя бы уже потому, что продукты реакции в реакционной смеси первоначально отсутствуют.

Даже если мы специально захотим провести реакцию в стандартных условиях, это окажется нелегким делом. Действительно, пусть мы каким-то образом обеспечили стандартные условия реакции (т.е. стандартные состояния всех участвующих в ней веществ) в первый момент времени.

Но как только реакция начнется, условия перестанут быть стандартными, поскольку все концентрации изменятся.

Тем не менее мысленно мы можем представить себе течение реакции в стандартных условиях. Для этого нужно считать объем реакционной смеси очень большим (в пределе - бесконечно большим), тогда концентрации веществ при протекании реакции изменяться не будут.

Действительный смысл этого критерия состоит в сопоставлении силы двух окислителей в стандартных условиях: если Δφо> 0, то окислитель в левой части ионного уравнения ОВР сильнее второго окислителя в правой части уравнения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]