
- •Вопрос 4
- •Вопрос 5
- •Вопрос 6
- •Законы — начала термодинамики
- •Внешняя и внутренняя сферы.
- •Комплексообразователь (центральный атом – акцептор), лиганды – доноры электронных пар, координационное число комплексообразователя.
- •Два типа диссоциации комплексов – как ионных солей и по внутренней сфере
- •Понятие о термодинамической прочности (устойчивости) комплексов
- •Значение комплексных соединений в природе, науке и технике
- •Билет №25
- •1.Овр(окислительно-восстановительные реакции)
- •2.Степень окисления.
- •3.Окислители восстановители.
- •4.Эквиваленты и эквивалентные массы окислителей и востановителей.
- •5.Типы окислительно-востановительных реакций.
- •6.Составление ионно-электронных уравнений. Примеры.
- •Билет №26
- •1.Электрохимические процессы.
- •2.Равновесие на границе металл-раствор соли металла.
- •3.Металлический электродный потенциал.
- •4.Электродный потенциал.
- •5.Водородный электрод. (см. Записи в тетр. За 2.12)
- •6.Стандартный электродный потенциал.
- •Билет №27
- •Вопрос 1: Ряд стандартных электродных потенциалов (ряд напряжений) и следствие из него.
- •Вопрос 2: Направление окислительно-восстановительных реакций (овр).
- •Вопрос 3: Стандартные потенциалы для химических окислительно-восстановительных систем. Табличные данные.
- •Гальванические элементы
- •Электрические аккумуляторы
- •Топливные элементы
- •Взаимодействие со щелочными и щёлочноземельными металлами
- •Взаимодействие с оксидами металлов (как правило, d-элементов)
- •Гидрирование органических соединений
- •Классификация
- •35.Водородные соединения галогенов. Получение. Физико- химические свойства. Восстановительные и кислотные свойства растворов галогенводородов.
- •36.Кислородные соединения галогенов. Оксиды хлора, кислородные кислоты галогенов и их соли. Химические свойства. Применение.
- •Билет 37
- •Билет 38
- •Получение
- •Получение
- •Химические свойства
- •Химические свойства
- •Применение
- •Химические свойства
- •Получение и свойства
- •Химические свойства
- •Применение
- •Применение
- •Вопрос 43
- •Вопрос 44
- •Вопрос 45
- •Билет №46
- •Билет №47 Водородные и кислородные соединения фосфора. Фосфин, фосфиды. Оксиды фосфора. Строение молекул. Получение. Свойства.
- •Билет №48
- •Билет №49 Орто - и метафосфорные кислоты и их соли. Фосфорные удобрения. Получение и свойства.
- •Билет № 51
- •Билет № 52
- •Нахождение в природе
- •Марганцовая кислота
- •Свойства элементов VIII b группы.
- •Железо, нахождение в природе
- •Соли железа
- •Физиологические функции:
- •Свойства солей железа
- •Био цинк. Содержит микроэлемент цинк (Zn)
- •Био медь. Содержит микроэлемент медь (Cu)
- •Аллотропия
- •Получение
- •Химические свойства
- •Получение
- •Химические свойства
- •Классификация
- •Получение
- •Химические свойства
- •Классификация
- •Средние соли Получение
- •Химические свойства
Вопрос 43
С водородом азот образует соединения в состоянии окисления -3,-2,-1.NH3-аммиак, N2H4-гидразин, NH 2OH- гидроксиламин. К водородным соединениям азота так же относится HN3- азотистоводородная кислота. Эта кислота в отличии от других водородных соединений имеет кислотный характер, причём связанные между собой атомы азота имеют разные валентности.NH3-газ без цвета , с резким запахом, ядовит, растворим в воде .Хорошо известный нашатырный спирт-это 25%-й раствор аммиака в воде. Молекула аммиака имеет форм тетраэдра . Аммиак применяют в холодильной технике используется в качестве холодильного агента (R717)
В медицине 10% раствор аммиака, чаще называемый нашатырным спиртом, применяется при обморочных состояниях (для возбуждения дыхания), для стимуляции рвоты, а также наружно — невралгии, миозиты, укусы насекомых, обработка рук хирурга. При неправильном применении может вызвать ожоги пищевода и желудка (в случае приёма неразведённого раствора), рефлекторную остановку дыхания (при вдыхании в высокой концентрации).
NH 4OH- соединение, образующееся при взаимодействии аммиака с водой и диссоциирующее в воде с образованием катионов аммония и гидроксид-анионов. (NH3 + H2O = NH3·H2O = NH4+ + OH−)Водные растворы аммиака, в которых он существует преимущественно в форме гидроксида аммония, носят название аммиачная вода. Аммиачная вода применяется для получения солей аммония (азотные удобрения), в производстве соды, красителей.
Со́ли аммо́ния — соли, содержащие положительно заряженый ион аммония NH4+ С кислотами аммиак образует соли аммония , например с соляной кислотой - хлорид аммония (нашатырь) NH4Cl. Сульфат аммония (NH4)2SO4 — как дешёвое азотное удобрение. Гидрокарбонат аммония NH4HCO3 и карбонат аммония (NH4)2CO3 — в пищевой промышленности при производстве мучных кондитерских изделий в качестве химического разрыхлителя, при крашении тканей, в производстве витаминов, в медицине; Нитрат аммония (аммиачная селитра) NH4NO3 применяют как азотное удобрение . Аммониевые соли кислородсодержащих кислот при нагревании разлагаются путём внутреннего окисления –восстановления :
а) если кислота летучая
NH4Cl → NH3↑ + HCl
NH4HCO3 → NH3↑ + Н2O + CO2
б) если анион проявляет окислительные свойства
NH4NO3 → N2O↑ + 2Н2O
(NH4)2Cr2O7 → N2↑ + Cr2O3+ 4Н2O добрение и для изготовления взрывчатых веществ — аммонитов.
Гидрази́н (диамид) H2N—NH2 — бесцветная, сильно гигроскопическая жидкость с неприятным запахом. Известны соли гидразина — хлорид N2H5Cl, сульфат N2H6SO4 и т. д. Иногда их формулы записывают N2H4 · HCl, N2H4 · H2SO4 и т. д. и называют гидрохлорид гидразина, сульфат гидразина. Качественной реакцией на гидразин служит образование окрашенных гидразонов с некоторыми альдегидами, в частности - с p-диметиламинобензальдегидом. Гидразин и его производные — чрезвычайно токсичные соединения по отношению к различным видам животных и растительных организмов. Разбавленные растворы сульфата гидразина губительно действуют на семена, морские водоросли, одноклеточные и простейшие организмы. У млекопитающих гидразин вызывает судороги. В животный организм гидразин и его производные могут проникать любыми путями: при вдыхании паров продукта, через кожу, через пищеварительный тракт.
Гидроксилами́н NH2OH — бесцветные кристаллы, легко растворимые в воде с образованием гидрата NH2ОН·Н2О. В кислом водном растворе гидроксиламин устойчив, однако ионы переходных металлов катализируют его распад. Подобно NH3, гидроксиламин реагирует с кислотами, образуя соли гидроксиламиния. На воздухе легко окисляется кислородом воздуха. В некоторых реакциях NH2OH проявляетс окислительные свойства, при этом он восстанавливается до NH3 или NH4+. Важнейшей солью гидроксиламина является солянокислый NH2OH·HCl. Он применяется как восстановитель в неорганическом анализе; для количественного определения формальдегида, фурфурола, камфоры, глюкозы; в фотографии и медицине.
Азо́тистоводоро́дная кислота́, азоими́д, HN3 — кислота, соединение азота с водородом. Бесцветная, летучая, чрезвычайно взрывоопасная (взрывается при нагреве, ударе или трении) жидкость с резким запахом. Очень токсична. Её хорошо растворимые соли тоже очень ядовиты. Механизм токсичности аналогичен цианидам (блокирование цитохромов). Кислота и ее соли разлагаются при действии сильных окислителей с выделением азота. Соли этой кислоты называются азидами. При ударе или нагревании распадаются со взрывом, на чем основано применение азида свинца Pb(N3)2 в качестве детонатора. Относительно устойчивы ионные азиды щелочных металлов, за исключением LiN3. .Азидоводород HN3 получают действием ортофосфорной кислоты на азид натрия NaN3, который синтезируют из амида натрия:
2NaNH2 + N2O → NaN3 + NaOH + NH3
3NaN3 + H3PO4 → 3HN3 + Na3PO4
Также азидоводород можно получить:
взаимодействием N2H4 с HNO2
действием разбавленной H2SO4 на азиды металлов.
Азид меди обладает высокой мощностью взрыва и чувствительностью. Азиды серебра, ртути, золота обладают очень большой энергией взрыва.