
- •Вопрос 4
- •Вопрос 5
- •Вопрос 6
- •Законы — начала термодинамики
- •Внешняя и внутренняя сферы.
- •Комплексообразователь (центральный атом – акцептор), лиганды – доноры электронных пар, координационное число комплексообразователя.
- •Два типа диссоциации комплексов – как ионных солей и по внутренней сфере
- •Понятие о термодинамической прочности (устойчивости) комплексов
- •Значение комплексных соединений в природе, науке и технике
- •Билет №25
- •1.Овр(окислительно-восстановительные реакции)
- •2.Степень окисления.
- •3.Окислители восстановители.
- •4.Эквиваленты и эквивалентные массы окислителей и востановителей.
- •5.Типы окислительно-востановительных реакций.
- •6.Составление ионно-электронных уравнений. Примеры.
- •Билет №26
- •1.Электрохимические процессы.
- •2.Равновесие на границе металл-раствор соли металла.
- •3.Металлический электродный потенциал.
- •4.Электродный потенциал.
- •5.Водородный электрод. (см. Записи в тетр. За 2.12)
- •6.Стандартный электродный потенциал.
- •Билет №27
- •Вопрос 1: Ряд стандартных электродных потенциалов (ряд напряжений) и следствие из него.
- •Вопрос 2: Направление окислительно-восстановительных реакций (овр).
- •Вопрос 3: Стандартные потенциалы для химических окислительно-восстановительных систем. Табличные данные.
- •Гальванические элементы
- •Электрические аккумуляторы
- •Топливные элементы
- •Взаимодействие со щелочными и щёлочноземельными металлами
- •Взаимодействие с оксидами металлов (как правило, d-элементов)
- •Гидрирование органических соединений
- •Классификация
- •35.Водородные соединения галогенов. Получение. Физико- химические свойства. Восстановительные и кислотные свойства растворов галогенводородов.
- •36.Кислородные соединения галогенов. Оксиды хлора, кислородные кислоты галогенов и их соли. Химические свойства. Применение.
- •Билет 37
- •Билет 38
- •Получение
- •Получение
- •Химические свойства
- •Химические свойства
- •Применение
- •Химические свойства
- •Получение и свойства
- •Химические свойства
- •Применение
- •Применение
- •Вопрос 43
- •Вопрос 44
- •Вопрос 45
- •Билет №46
- •Билет №47 Водородные и кислородные соединения фосфора. Фосфин, фосфиды. Оксиды фосфора. Строение молекул. Получение. Свойства.
- •Билет №48
- •Билет №49 Орто - и метафосфорные кислоты и их соли. Фосфорные удобрения. Получение и свойства.
- •Билет № 51
- •Билет № 52
- •Нахождение в природе
- •Марганцовая кислота
- •Свойства элементов VIII b группы.
- •Железо, нахождение в природе
- •Соли железа
- •Физиологические функции:
- •Свойства солей железа
- •Био цинк. Содержит микроэлемент цинк (Zn)
- •Био медь. Содержит микроэлемент медь (Cu)
- •Аллотропия
- •Получение
- •Химические свойства
- •Получение
- •Химические свойства
- •Классификация
- •Получение
- •Химические свойства
- •Классификация
- •Средние соли Получение
- •Химические свойства
Получение и свойства
В последние несколько десятилетий в результате работы Г. Шмидта и других ученых в Германии сформировалось новое представление: как H2S может реагировать с SO3 или HSO3Cl, образуя тиосерную кислоту H2S2O3, так же в аналогичной реакции с H2S2 образуется «дисульфанмоносульфоновая кислота» H2S2SO3H; подобным образом полисульфаны H2Sn (n=2-6) дают HSnSO3H. Реакции с обоих концов полисульфановой цепи приводят к образованию «полисульфандисульфоновых кислот» HO3SSnSO3H, которые чаще называют политионовыми кислотами.
Известно много способов синтеза этих кислот, однако механизм реакции остается неясным ввиду большого числа одновременно протекающих и конкурирующих реакций окисления-восстановления, катенации и диспропорционирования. Типичные примеры таковы:
Взаимодействие сероводорода и диоксида серы. При этом получается сложная смесь различных кислородсодержащих кислот серы самого разного строения, называемая жидкостью Вакенродера.
Реакции хлорсульфанов с HSO3- или HS2O3-, например:
SCl2 + 2HSO3- → [O3SSSO3]2- + 2HCl
S2Cl2 + 2HSO3- → [O3SS2SO3]2- + 2HCl
SCl2 + 2HS2O3- → [O3SS3SO3]2- + 2HCl
Окисление тиосульфатов мягкими окислителями, такими как I2, Cu2+, S2O82-, H2O2, MnO2.
Различные специальные методы синтеза.
Дитионат-ион получают окислением водного раствора диоксида серы суспензиями порошков оксидов марганца или железа (MnO2, Fe2O3):
MnO2 + 2SO2 → MnS2O6
Тритионат-ион синтезируют окислением тиосульфат-иона пероксидом водорода:
2S2O32- + 4H2O2 → S3O62- + SO42- + 4H2O
Тетратионат-ион можно получить окислением тиосульфат-иона иодом (реакция используется в иодометрии):
S2O32- + I2 → S4O62- + 2I-
Пентатионат-ион получают действием SCl2 на тиосульфат-ион и из жидкости Вакенродера при добавлении к ней ацетата калия. Вначале выпадают призматические кристаллы тетратионата калия, затем — пластинчатые кристаллы пентатионата калия, из которого действием винной кислоты получают водный раствор пентатионовой кислоты.
Гексатионат калия K2S6O6 лучше всего синтезировать действием KNO2 на K2S2O3 в концентрированной HCl при низких температурах.
Безводные политионовые кислоты могут быть получены в эфирном растворе следующими тремя общими способами:
HSnSO3H + SO3 → H2Sn+2O6 (n = 1, 2 … 8)
H2Sn + 2SO3 → H2Sn+2O6 (n = 1, 2 … 8)
2HSnSO3H + I2 → H2S2n+2O6 + 2HI (n = 1, 2 … 6)
Более сложные политионаты с числом атомов серы, достигающим 23, получают реакцией тиосульфатов с SCl2 или S2Cl2.
Наиболее устойчивы политионовые кислоты с небольшим числом атомов серы в цепи (x = 3÷6). Политионовые кислоты устойчивы только в водных растворах, при концентрировании быстро разрушаются с выделением элементной серы, диоксида серы и иногда — серной кислоты. Кислые соли политионовых кислот — гидрополитионаты — не существуют. Политионат-ионы заметно более устойчивы, чем соответствующие им кислоты.
При действии окислителей (перманганат калия, дихромат калия) политионовые кислоты и их соли окисляются до сульфатов, а при взаимодействии с сильными восстановителями (амальгама натрия) превращаются в сульфиты и дитиониты.
Серная кислота-сильная двухосновная кислота, тяжёлая маслянистая жидкость без цвета и запаха, гигроскопична. При расстворение концентрированной серной кислоты в воде выделяется большое количество тепла, поэтому её надо осторожно приливать в воду и перемешивать раствор.