Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вычислительная_математи_ка.doc
Скачиваний:
18
Добавлен:
16.04.2019
Размер:
1.04 Mб
Скачать

Метод Рунге - Кутта четвертого порядка точности:

  1. Постановка 2-х точной краевой задачи.

ДКЗ представляет собой задачу отыскивания реш. обыкновенного диф. ур. на отр. [а; б] при условии, что реш. заданы на обоих краях отрезка. Рассмотрим методы реш. задач этого класса, кот. можно записать в виде: U''(x)=f(x, u); на примере одномерного стационарного ур. теплопроводности:

. Здесь k(x) играет роль коэф. теплопроводности, - плотность потока тепла. Помимо этого, указанное ур. может описать процесс диффузии газов, деформированию ступ и ступеней, распределение эл. магнитных волн, установившееся распределение плотности патронов в реакторе и многое другое.

Предпримем, что ф-и q(x), k(x), f(x) известны и выполняется условие k(x)>0, q(x)>0. Тогда распределение температуры в стержне, описывание ф-ей f(x), м.б однозначно определено при задании состояния U(x) на границах отрезка [a, b], т.е U(a)=Ua, U(b)=Ub. Такие краевые условия наз. краевыми условиями 1-го рода. Часто краевую задачу записывают в операторном виде: L[U](x) – диф. оператор

  1. Метод конечных разностей

Одним из широко распространенных методов реш. задачи (1) с ограничением (2) явл. метод конечных разностей. В этом методе область непрерывного аргумента заменяет конечным множеством точек (сеткой). После этого вместо ф-ии непрерывного арг. рассмотренные вводится ф-ия, определяющаяся только в узлах сетки (сеточная ф-ия). В этом случае произвед. м. б заменены своими разностными аналогами, т. е приближенно численными выражениями. В итоге исходная краевая задача заменяется дискретной краевой задачей или разностной схемой, представляющей собой сист. линейных и нелинейных алгебраич. ур., реш. кот. приблизительно принимает за реш. исходной задачи.

Зададим k(x)=1. В этом сл-е исх. задача примет вид. -U''(x)+q(x)U(x)=f(x) (3)

U(a)=Ua, U(b)=Ub (4)

Заменим отрезок [a; b] непрерывного арг. Х сеткой, кот. обозначим . где х0=а, хn=b

h – граница отрезка.

В результате реш. задачи 3 после подмены непрерывной ф-ии U(x) сеточной ф-ей будет найдена сеточная ф-я Uh, такая, что

В результате диф. ур. (3) заменяется следующим:

Будем считать, что ф-ия Uh во всех узлах сетки Wh удовлетворяет ур. (5). В этом случае ур. (5) явл. разностным ур. аппроксимации краевой задачи (1) с ограничением (2), фактически явл. системой линейной алгебры уравнений. Преобразуем ур. (5): -Ui-1 +Ui(2+h2qi)-Ui+1=h2fi.

U0=Ua

Un=Ub

Полученную систему удобно реш. методом прогонки. М-д прогонки предназначен для реш. трёх диагональных матриц:

Прямой ход заключается в расчёте прогоночных коэф. α и β. На обратном ходе выч. знач. неизвестной ф-ии.

Значения ф-ии Ui выч. на обратном ходе: Unn UiiUi+1i,