- •2.Понятие определителя n-ого порядка. Схемы вычисления определителей 2-ого и 3-ого порядков
- •3.Минор и алгебраическое дополнение элемента определителя. Теорема о разложении определителя.
- •4.Свойства определителей. Вычисление определителей порядка выше 3-его при помощи свойств определителя и теоремы о разложении определителя.
- •5.Обратная матрица. Необходимое и достаточное условие существования обратной матрицы. Алгоритм вычисления обратной матрицы.
- •6.Ранг матрицы. Преобразования матрицы, не меняющие ее ранга.
- •7.Системы m линейных уравнений с n неизвестными. Основные понятия. Матричный вид системы линейных уравнений.
- •8.Системы n линейных уравнений с n неизвестными. Метод обратной матрицы.
- •9.Системы линейных уравнений с n неизвестными.Формулы Крамера.
- •10.Метод Гаусса решения системы m линейных уравнений с n неизвестными.
- •12.Системы линейных однородных уравнений. Существование ненулевого решения.
- •15.Скалярное произведение векторов и его свойства.Условие перпендикулярности векторов.Угол между векторами.
- •16.Векторное произведение и его свойства.
- •17.Смешанное произведение и его свойства.Условие компланарности векторов.
- •18.Общее уравнение прямой на плоскости. Случаи расположения прямой относительно осей координат.Уравнение прямой в отрезках.
- •19.Уравнение прямой с угловым коэффициентом.Уравнение прямой, проходящей через данную точку в данном направлении.
- •20.Уравнение прямой, проходящей через две данные точки (на плоскости).
- •21.Угол между двумя прямыми (на плоскости). Условия параллельности и перпендикулярности прямых.
- •22.Расстояние от точки до прямой.
- •23.Эллипс
- •24.Гипербола.
- •25.Парабола.
- •26.Поворот и параллельный перенос осей координат (на плоскости).
- •28.Случаи расположения плоскости относительно осей координат.Уравнение плоскости в отрезках.
- •29.Условие параллельности и перпендикулярности плоскостей. Угол между плоскостями.
- •30.Уравнение прямой в пространстве,как линии пересечения двух плоскостей. Канонические уравнения прямой в пространстве.
- •31.Уравнения прямой в пространстве, проходящей через две данные точки. Параметрические уравнения прямой в пространстве.
- •33.Предел числовой последовательности.
- •34.Предел функции на бесконечности.
- •32.Угол между прямой и плоскостью
- •35.Предел функции в точке.
- •36.Бесконечно малые функции. Связь бесконечно малой функции и функции, имеющей предел.Свойства бесконечно малых функций.
- •37.Бесконечно большие функции.Их свойства.Теорема о связи бесконечно большой и бесконечно малой функций.
- •38.Теорема о единственности предела.Основные теоремы о пределах.Предел сложной функции.
- •Теорема о пределе сложной функции.
- •39.Признаки существования пределов.
- •Теорема о сохранении функцией знака своего предела
- •40.Первый замечательный предел.
- •41. Сравнение бесконечно малых функций. Примеры эквивалентных бесконечно малых функций.
- •42.Второй замечательный предел.Число е.Важные пределы как следствие второго замечательного предела.
- •43.Задача о непрерывном начислении процентов.
- •44.Непрерывность функции в точке.Приращение функции,приращение аргумента.Свойства функций, непрерывных в точке.
- •45.Непрерывность функции на отрезке.
- •46.Классификация точек разрыва.
- •47.Задача о скорости неравномерного прямолинейного движения.
- •48.Задача о касательной, приводящая к понятию о производной.
- •49.Понятие производной, ее геометрический и механический смысл. Уравнение касательной к графику функции. Примеры недифференцируемых функций в точке.
- •Замечание
- •54.Производная степенной функции. Логарифмическая производная.
- •55.Производные высших порядков.
45.Непрерывность функции на отрезке.
И в заключение рассмотрим свойства функций, непрерывных на отрезке.
Теорема
Больцано-Коши
об обращении функции в нуль. Пусть
функция
определена
и непрерывна на отрезке [a,
b]
и на концах этого отрезка принимает
значения различных знаков, то есть
Тогда
существует точка
такая,
что
Проиллюстрируем теорему:
Из рисунка видно, что функция имеет три нуля, то есть три точки, в которых она обращается в нуль.
Вторая
теорема Больцано-Коши
о промежуточном значении функции. Пусть
функция
определена
и непрерывна на отрезке [a,
b]
и на концах этого отрезка принимает
неравные значения
.
Тогда, каково бы ни было число
между
числами
,
найдется точка
в
интервале
такая,
что
.
Теорема
1
Вейерштрасса.
Если функция
определена
и непрерывна на отрезке [a,b],
то она на этом отрезке ограничена, то
есть существуют числа m
и М такие, что m
М
для любого
.
Теорема
2
Вейерштрасса.
Если функция
определена
и непрерывна на отрезке [a,b],
то она достигает на этом отрезке своих
наименьшего и наибольшего значений
(то есть существуют такие
на
отрезке [a,b],
что для любого
46.Классификация точек разрыва.
|
|||||||||||||||
|
|||||||||||||||
Если функция f (x) не является непрерывной в точке x = a, то говорят, что f (x) имеет разрыв в этой точке. На рисунке 1 схематически изображены графики четырех функций, две из которых непрерывны при x = a, а две имеют разрыв.
Классификация точек разрыва функции Все точки разрыва функции разделяются на точки разрыва первого и второго рода. Говорят, что функция f (x) имеет точку разрыва первого рода при x = a, если в это точке
При этом возможно следующие два случая:
Такая точка называется точкой устранимого разрыва.
Такая
точка называется точкой
конечного разрыва.
Модуль разности значений односторонних
пределов
Функция f (x) имеет точку разрыва второго рода при x = a, если по крайней мере один из односторонних пределов не существует или равен бесконечности. |
|||||||||||||||
Пример |
|||||||||||||||
|
|||||||||||||||
Исследовать
функцию
Решение. Данная функция не определена в точках x = −1 и x = 1. Следовательно, функция имеет разрывы в точках x = ±1. Чтобы определить тип разрыва, вычислим односторонние пределы в этих точках.
Поскольку левосторонний предел при x = −1 равен бесконечности, то данная точка является точкой разрыва второго рода.
Аналогично, левосторонний предел в точке x = 1 равен бесконечности. Эта точка также является точкой разрыва второго рода. |
|||||||||||||||

Левосторонний
предел и правосторонний предел не
равны друг другу: