Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методические указания и задания к домашним конт....doc
Скачиваний:
5
Добавлен:
22.12.2018
Размер:
1.49 Mб
Скачать

3.2. Периодическое изменение окислительно-восстановительных свойств элементов.

Согласно периодическому закону Д.И. Менделеева, все свойства элементов при увеличении поряд­ко­вого номера в периодической системе изменяются не непрерывно, а периодически, то есть через определённое число элементов повторяются. Причина периодического характера изменения свойств элементов заключается в периодическом повторении аналогичных электронных конфигураций валентных подуровней: всякий раз, как только повторяется какая-либо электронная конфигурация валентных подуровней (например, рассмотренная в примере 3.1.3.конфигурация ns2np2) элемент по своим свойствам во многом повторяет предшествующие эле­мен­ты аналогичного электронного строения.

Важнейшим химическим свойством любого элемента является способность его атомов отдавать или присоединять электроны, характеризующая, в первом случае восстановительную, во втором – оки­слительную активность элемента. Количественной характеристикой восстановительной активности элемента является энергия (потенциал) ионизации, окислительной – сродство к электрону.

Энергия (потенциал) ионизации – это энергия, которую необходимо затратить для отрыва и уда­ле­ния электрона из атома6. Понятно, чем меньше энергия ионизации, тем сильнее выражена способность атома отдавать электрон и, следовательно, выше восстановительная активность элемента. Энергия ионизации, как и всякое свойство элементов, при увеличении порядкового номера в периодической системе изменяется не моно­тонно, а периодически. В периоде, при фиксированном числе электронных слоёв, энергия ионизации увели­чи­ва­ется вместе с увеличением порядкового номера из-за увеличения силы притяжения внешних электронов к атом­ному ядру в связи с увеличением заряда ядра. При переходе к первому элементу следующего периода про­ис­хо­дит резкое уменьшение энергии ионизации – настолько сильное, что энергия ионизации становится меньше энергии ионизации предшествующего аналога в подгруппе. Причиной этого является резкое уменьшение силы притяжения удаляемого внешнего электрона к ядру ввиду значительного возрастания атомного радиуса из-за уве­личения количества электронных слоёв при переходе к новому периоду. Итак, при увеличении поряд­ко­во­го номера, в периоде энергия ионизации увеличивается7, а в главных подгруппах уменьшается. Так что эле­менты с наибольшей восстановительной активностью расположены в начале периодов и внизу главных под­групп.

Сродство к электрону – это энергия, которая выделяется при присоединении атомом электрона. Чем больше сродство к электрону, тем сильнее выражена способность атома присоединять электрон и, сле­до­ва­тельно, тем выше окислительная активность элемента. При увеличении порядкового номера, в периоде срод­ство к электрону увеличивается ввиду усиления притяжения электронов внешнего слоя к ядру, а в главных груп­пах элементов происходит уменьшение сродства к электрону в связи с уменьшением силы притяжения внеш­них электронов к ядру и из-за увеличения атомного радиуса. Таким образом, элементы с наибольшей окислительной активностью расположены в конце периодов8 и вверху главных групп периодической системы.

Обобщённой характеристикой окислительно-восстановительных свойств элементов является электро­отрицательность – полусумма энергии ионизации и сродства к электрону. Исходя из закономерности изме­нения энергии ионизации и сродства к электрону в периодах и группах периодической системы, нетрудно вы­вес­ти, что в периодах электроотрицательность увеличивается слева направо, а в главных - группах уменьшается сверху вниз. Следовательно, чем больше электроотрицательность тем сильнее выражена окислительная активность элемента и тем слабее его восстановительная активность.

Пример 3.2.1. Сравнительная характеристика окислительно-восстановительных свойств элементов IA – и VA-группы 2-го и 6-го периодов.

Т.к. в периодах энергия ионизации, сродство к электрону и электроотрицательность увеличиваются сле­ва направо, а в группах - уменьшаются сверху вниз, среди сравниваемых элементов наибольшей окислительной ак­тивностью обладает азот, а наиболее сильным восстановителем является франций.

Элементы, атомы которых способны проявлять только восстановительные свойства, принято на­зывать металлическими (металлами). Атомы неметаллических элементов (неметаллов) могут проявлять и восстановительные свойства, и окислительные свойства, но окислительные свойства для них более ха­рактерны.

Металлы – это, как правило, элементы с небольшим числом внешних электронов. К числу металлов от­носятся все элементы побочных групп, лантаноиды и актиноиды, т.к. число электронов во внешнем слое атомов этих элементов не превышает 2. Металлические элементы содержатся также в главных подгруппах. В главных подгруппах 2-го периода Li и Be – типичные металлы. Во 2-м периоде потеря металлических свойств про­ис­хо­дит при поступлении во внешний электронный слой третьего электрона – при переходе к бору. В главных под­группах нижележащих периодов происходит последовательное смещение границы между металлами и не­ме­тал­лами на одну позицию вправо в связи с усилением восстановительной активности элементов из-за увеличения атомного радиуса. Так, в 3-м периоде условная граница делящая металлы и неметаллы, проходит уже между Al и Si, в 4-м периоде первый типичный неметалл – мышьяк и т.д.