Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Оксиды.doc
Скачиваний:
50
Добавлен:
08.12.2018
Размер:
5.9 Mб
Скачать

8.1.6. Потенциалы газовых электродов

Существуют металлы, отличающиеся высокой химической стойкостью (платина, золото и др.), которые практически не могут посылать свои ионы в раствор. Электроды, изготовленные из подобных металлов, называют инертными.

Однако такие металлы могут адсорбировать молекулы, атомы и ионы других веществ. Например, платина адсорбирует на своей поверхности многие газы и, в частности, водород. Если такая платиновая пластина, насыщенная адсорбированным водородом находится в растворе, содержащем катионы H+ (H3O+), то на поверхности ее будет протекать следующий процесс:

Такой электрод называется водородным (H2, Pt | 2H+). Водородный электрод (рис.8.3) относится к газовым электродам. В этом электроде скачок потенциала отвечает установлению равновесия между катионами H+ и молекулами H2 через посредство платиновой поверхности, имеющей свободные электроны и адсорбирующей водород.

Рис. 8.3. Схема водородного электрода.

Уравнение Нернста для водородного электрода имеет вид:

H2/2H+ = -0,059· lg c(H+)

Учитывая, что lg c(H+) = -pH, получим:

H2/2H+ = -0,059· рН

Аналогично водородному электроду можно создать кислородный электрод. Для этого металлическую пластину, например, Pt, необходимо привести в контакт с O2 и раствором, содержащим ионы, которые образуются при восстановлении кислорода (ионы OH-)

O2, Pt | OH-

На кислородном электроде протекает реакция, выражаемая уравнением:

Можно рассчитать потенциал кислородного электрода при любых значениях рН и давлении кислорода. Если p = 1 атм (101 кПа), то

OH-/O2 = 1,23 – 0,059· pH

Зависимость потенциала водородного и кислородного электродов от рН растворов приведена на рис.8.4

Рис. 8.4. Зависимость потенциалов водородного и кислородного электродов от рН среды (диаграмма Пурбэ).

8.1.7.Поляризация в электрохимических процессах

Равновесные потенциалы электродов могут быть определены в условиях отсутствия в цепи тока. При прохождении электрического тока потенциалы электродов меняются. Это явление называют поляризацией:

 = i - p ,

где  - поляризация;

i - потенциал электрода при прохождении тока;

p - равновесный потенциал (i = 0).

Так как поляризация может наблюдаться как на катоде, так и на аноде, то различают катодную К и анодную A поляризации.

Любая электрохимическая реакция многостадийна. Условно ее можно разбить на 3 стадии: 1) подвод реагентов к электроду; 2) собственно электрохимическая реакция; 3) отвод продуктов реакции от электрода.

Если бы все эти стадии протекали мгновенно, то потенциал электрода при прохождении тока не изменялся бы и, соответственно, поляризация была бы равна нулю. Однако, все три стадии протекают с конечными скоростями, причем одна из них лимитирует всю реакцию и для ее ускорения необходимо изменение потенциала электрода, т.е. поляризация. Следовательно, возникновение поляризации обусловлено замедленностью отдельных стадий электрохимического процесса. Соответственно, в зависимости от характера замедленной стадии на электроде возникает или концентрационная, или электрохимическая поляризация.

Изменение потенциала электрода вследствие изменения концентрации реагентов в приэлектродном слое при прохождении тока называется концентрационной поляризацией.

Изменение потенциала, обусловленное замедленностью собственно электрохимических стадий реакций, называется электрохимической поляризацией (перенапряжением).

Потенциал катода в любой электрохимической системе при прохождении электрического тока становится более отрицательным, а потенциал анода - более положительным.

Графическую зависимость потенциала от плотности тока называют поляризационной кривой. На рис.8.5 представлены поляризационные кривые электродов.

Рис. 8.5. Поляризационные кривые электродов.

Плотность тока:

,

где I - сила тока, А;

S - площадь электродов, м2

Величину поляризации электрода можно определить по разности между потенциалом при прохождении тока и равновесным потенциалом  p. А разность потенциалов катода и анода при прохождении тока называется напряжением.

U = iK - iA

Таким образом, напряжение гальванического элемента при прохождении электрического тока меньше его напряжения при I  0 вследствие поляризации электродов и омических потерь.

U = Eэ - K - A - I· R