
- •Н.Ф. Стась введение в химию
- •Томск 2007
- •Л.Д. Свинцова
- •Е.М. Князева
- •Можно ли изменить эту ситуацию? Какими методическими приёмами можно сократить время изучения «начал» химии?
- •2. Этапы развития химии
- •Глава 1. Атомно-молекулярное учение и стехиометрия
- •1.1. Стехиометрические законы
- •1.2. Химические элементы
- •1.3. Простые вещества и соединения
- •1.4. Валентность
- •1.5. Формулы соединений
- •1.6. Структурные формулы
- •1.7. Атомные и молекулярные массы
- •1.8. Количество и молярная масса вещества
- •1.9. Молярный объем газа
- •1.10. Закон эквивалентов
- •101325 Па соответствует 760 мм рт. Ст.
- •1.11. Химические реакции
- •1.12. Стехиометрические расчеты
- •1.12.1. Расчеты по формулам веществ
- •1.12.2. Расчеты по уравнениям реакций
- •1.12.3. Расчеты по закону эквивалентов
- •1.13. Способы определения атомной массы
- •1.14. Определение молекулярных масс соединений
- •1.15. Установление формул соединений
- •1.16. Тест для самоконтроля
- •1) MnSo4 2) Mn2o7 3) MnO2 4) k2MnO4
- •1.17. Задачи и упражнения для самостоятельного решения
- •Глава 2. Классификация и номенклатура неорганических веществ
- •2.1. Оксиды
- •2.1.1. Классификация оксидов
- •2.1.2. Номенклатура оксидов
- •1.3. Свойства оксидов
- •2.1.4. Получение оксидов
- •2.1.5. Закономерности изменения свойств оксидов
- •2.1.6. Двойные оксиды
- •2.1.7. Пероксиды
- •2.2. Основания
- •2.2.1 Классификация оснований
- •2.2.2. Номенклатура оснований
- •2.2.3. Свойства оснований
- •2.2.4. Получение оснований
- •2.3. Кислоты
- •2.3.1. Классификация кислот
- •2.3.2. Номенклатура кислот
- •2.3.3. Свойства кислот
- •2.3.3.1. Взаимодействие кислот с металлами
- •2.3.4. Получение кислот
- •2.4. Соли
- •2.4.1. Состав и классификация солей
- •2.4.2. Номенклатура солей
- •2.4.3. Свойства солей
- •2.4.4. Получение солей
- •2.5. Взаимосвязь между классами веществ
- •2.6. Современный подход к классификации оснований и кислот
- •2.7. Тривиальные названия неорганических соединений
- •2.9. Тест для самоконтроля
- •2.10. Упражнения для самостоятельной работы
- •Глава 3. Периодическая система химических элементов д.И. Менделеева
- •3.1. Основные формы Периодической системы
- •3.2. Периодические свойства элементов
- •3.2.1. Атомные и ионные радиусы химических элементов
- •3.2.2. Энергия и потенциал ионизации атомов
- •3.2.3. Сродство к электрону
- •3.2.4. Электроотрицательность
- •3.2.5. Валентность
- •3.3. Периодические свойства соединений
- •3.4. Тест для самоконтроля
- •1) Магний 2) марганец 3) молибден 4) менделевий 5) мейтнерий
- •3.5. Задачи и упражнения для самостоятельной работы
- •Глава 4. Химические реакции
- •4.1. Степень окисления и валентность
- •4.2. Окислительно-восстановительные реакции
- •4.3. Окислители и восстановители
- •4.4. Классификация окислительно-восстановительных реакций
- •4.5. Метод электронного баланса
- •4.6. Метод полуреакций
- •4.7. Реакции с участием пероксидов
- •4.8. Эквиваленты окислителей и восстановителей
- •4.9. Тест для самоконтроля
- •1) Восстановителя 2) Окислителя 3) Восстановителя и окислителя 4) Среды
- •4.10. Упражнения для самостоятельной работы
- •Глава 5. Растворы
- •5.1. Концентрация растворов
- •5.2. Стехиометрические расчёты по уравнениям реакций в растворах
- •5.3. Растворимость веществ
- •5.4. Электролитическая диссоциация
- •5.5. Степень электролитической диссоциации
- •5.6. Ионная теория кислот и оснований
- •5.7. Ионообменные реакции
- •5.8. Гидролиз солей
- •5.9. Тест для самоконтроля
- •5.10. Задачи и упражнения для самостоятельной работы
- •Приложения
- •Знания и умения,
- •Модуль I. Состав и строение вещества
- •Тема 1. Атомно-молекулярное учение и стехиометрия
- •Тема 2. Классификация и номенклатура неорганических соединений
- •Тема 3. Строение атома, периодический закон и Периодическая система д.И. Менделеева
- •Тема 4. Химическая связь и строение вещества
- •Модуль II. Закономерности протекания реакций
- •Тема 5. Основы химической термодинамики
- •Тема 6. Химическое равновесие
- •Тема 7. Основы химической кинетики
- •Модуль III. Растворы и электрохимические процессы
- •Тема 8. Способы выражения концентрации растворов
- •Тема 9. Свойства растворов неэлектролитов и электролитов
- •Тема 10. Реакции в растворах электролитов
- •Тема 11. Окислительно-восстановительные реакции
- •Тема 12. Электрохимические процессы
- •Элементы содержания химии, изучаемые студентами отдельных направлений и специальностей согласно требованиям Государственного образовательного стандарта
- •Глава 1. Атомно-молекулярное учение и стехиометрия
- •Глава 2. Классификация и номенклатура неорганических соединений
- •Задачи и упражнения для самостоятельного решения
- •Глава 3. Периодическая система химических элементов д.И.Менделеева Тест для самоконтроля
- •Задачи и упражнения для самостоятельного решения
- •Глава 4. Химические реакции
- •Глава 5. Растворы
- •Пример зачётного задания
- •Содержание
- •Введение в химию
5.4. Электролитическая диссоциация
Электролитами называются вещества, которые в растворах проводят электрический ток. К электролитам относятся кислоты, основания и соли. При растворении в воде они распадаются на ионы, движение которых обеспечивает электропроводность растворов этих веществ. Распад электролитов на ионы при растворении их в воде называется электролитической диссоциацией.
Основные положения теории электролитической диссоциации были разработаны Аррениусом (1887) и сводятся к следующему.
1.
Электролиты при растворении в воде
диссоциируют на ионы – частицы с
положительным (катионы) и отрицательным
(анионы) зарядом. Ионы могут быть простыми
(Na+,
Mg2+,
Al3+
и т.д.) и сложными (
и т.д.). Название «ион» в переводе с
греческого означает «странствующий»:
в растворе ионы беспорядочно передвигаются
(«странствуют») в различных направлениях.
2. Под действием электрического тока движение ионов становится направленным: катионы движутся к катоду, анионы – к аноду.
3. Диссоциация, как считал Аррениус, – обратимый процесс, поэтому в схемах диссоциации вместо знака равенства ставится знак обратимости. Схема диссоциации электролита, состоящего из катионов (К) и анионов (А), в кратком виде записывается так:
КА D К+ + А–
Позднее было установлено, что многие электролиты (они называются сильными электролитами) диссоциируют необратимо. Поэтому в схемах электролитической диссоциации сильных электролитов ставится знак равенства.
Теория электролитической диссоциации согласуется с атомно-молекулярным учением, строением атомов и результатами экспериментальных исследований.
Теория Аррениуса не объясняет механизма электролитической диссоциации. Причину и механизм электролитической диссоциации объяснили российские химики И.А. Каблуков и В.А. Кистяковский (1890–1891), которые опирались на химическую теорию растворов Менделеева.
Легче всего и нацело (необратимо) диссоциируют вещества, состоящие из ионов. При их растворении полярные молекулы воды (диполи) притягиваются к поверхностным ионам вещества, ориентируясь по отношению к ним противоположно заряженными полюсами. Из-за этого взаимодействие между ионами ослабляется, происходит разрыв химических связей между ними, и ионы переходят в раствор в гидратированном состоянии. На рисунке 5.1 показан механизм электролитической диссоциации ионного соединения. Полярные молекулы воды (диполи) изображены в виде эллипсов, противоположные стороны которого имеют противоположные заряды.
Рис. 5.1. Схема электролитической диссоциации ионного соединения в водном растворе
Ослабление химической связи между ионами зависит от диэлектрической проницаемости растворителя. Диэлектрическая проницаемость показывает, во сколько раз взаимодействие между зарядами в данной среде меньше, чем в вакууме. Для воды значение диэлектрической проницаемости очень велико (e = 81), поэтому ослабление связи происходит настолько, что для распада на отдельные ионы достаточно энергии теплового движения молекул.
Несколько иной механизм диссоциации электролитов, молекулы которых образованы ковалентно-полярными связями. В этом случае диполи воды ориентируются вокруг каждой полярной молекулы растворимого вещества. В результате происходит дополнительная поляризация связи, полярная молекула превращается в ионную, которая легко распадается на гидратированные ионы (рис. 2).
Рис. 5.2. Схема электролитической диссоциации полярных молекул в водном растворе
Доказано, что в водных растворах электролитов существуют только гидратированные ионы, свободных ионов нет. Совокупность молекул воды, окружающих ион, называется его гидратной оболочкой. Наличие гидратных оболочек у ионов затрудняет их обратное соединение – ассоциацию.