Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Введение.docx
Скачиваний:
13
Добавлен:
25.03.2016
Размер:
9.99 Mб
Скачать

Введение.

Сварка - один из ведущих технологических процессов промышленности, от степени развития и совершенствования которой во много зависит уровень развития машиностроения, строительства и ряда других отраслей.

Один из наиболее экономичных и эффективных разновидностей дуговой сварки в защитных газах является сварка в углекислом газе. Этот способ сварки в настоящие время широко применяется в промышленности. Способу сварки в углекислом газе свойственны свои особенности, отличающие его от других сварочных процессов.

Достигнуты значительные успехи в разработке прогрессивных методов сварки, создании высокоэкономичных сварочных конструкций и освоение сварки многих специальных сталей, цветных металлов, сплавов и неметаллических материалов.

Возникают всё новые и новые задачи разработки более совершенной технологии сварки, широко применяемых и новых материалов, что требует или модернизации существующего оборудования и технологии, или разработки более совершенных методов сварки. С целью повышения качества сварных швов, значительные усилия в настоящее время направлены на разработку и создание новых источников питания сварочной дуги, которые отвечали бы требованиям, предъявляемым к их динамическим свойствам.

В данной работе проводился анализ существующих методов и систем управления механизмом коротких замыканий и разработка способа управления механизмом коротких замыканий. Также проводилось экспериментальные исследования. Полученные результаты исследований были использованы при разработке системы управления механизмом коротких замыканий и технологической стабилизации процесса.

1 Литературный обзор

1.1Анализ современного состояния процесса сварки в СО2

Процесс сварки в среде углекислого газа с короткими замыканиями дугового промежутка является одним из самых массовых способов автоматической дуговой сварки. Способ сварки в среде углекислого газа с короткими замыканиями дугового промежутка характеризуется: высокой производительностью труда в 2 раза (по сравнению с РДС), широкой возможностью автоматизации и механизации, обеспечивает безотказное возбуждение дуги, стабильность режима сварки, малым нагревом и коробления изделия, возможностью сварки в различных пространственных положениях, низкой стоимостью выполнения сварочных работ, возможность наблюдения за ванной и дугой и др.

Наряду с отмеченными достоинствами, характер процесса сварки с частыми короткими замыканиями дугового промежутка, как было показано Лебедевым В.К. и Медведенко П.В., является случайным. Потапьевский А.Г. установил, что стабильность процесса в значительной степени определяется скоростью нарастания тока короткого замыкания, наклоном внешней характеристики источника питания, режимом сварки, диаметром и вылетом электродной проволоки. Кроме перечисленных факторов, большое влияние на стабильность процесса оказывает пространственное положение сварочной ванны.

Значительное количество работ по сварке в среде углекислого газа с короткими замыканиями дугового промежутка посвящено снижению разбрызгивания. Особенностью данной проблемы является ее противоречивый характер. Оптимальные по разбрызгиванию режимы характеризуются минимально возможным средним дуговым напряжением и повышенной индуктивностью дросселя в сварочной цепи. Однако малые напряжения на дуге вызывают неудовлетворительное формирование сварочного шва с большим усилением наплавленного металла и неудовлетворительным его переходом к основному металлу. Вместе с тем, увеличение индуктивности сварочного дросселя ведет к затягиванию длительности коротких замыканий, что отрицательно сказывается на устойчивости процесса сварки.

Указанное приводит к ограничению области применения сварочных режимов и большим потерям электродного металла в виде брызг, налипающих на поверхность свариваемого изделия, и наконечники сварочных горелок. Недостаточно хорошее формирование шва, вызванное нестабильностью процесса, проявляется в грубой чешуйчатости и значительном усилении, что требует дополнительной механической обработки поверхности шва после сварки. Для улучшения формирования целесообразно несколько снизить скорость нарастания тока короткого замыкания и повысить напряжение дуги. Однако увеличение дугового напряжения увеличивает разбрызгивание электродного металла, которое в широком технологически важном диапазоне сварочных режимов по-прежнему остается на уровне 10-15 % .

Совершенно очевидно, что повышение стабильности процесса и уменьшение разбрызгивания электродного металла при сварке в среде углекислого газа является актуальной задачей сварочного производства.

Процесс сварки в СО2 применяется в промышленности без изменения в первозданном виде и в настоящее время практически исчерпали свои технологические возможности. Поэтому необходимы новые методы управления процессом (на стадии капли) и повышение технико-экономических показателей.

Традиционными методами сварки трудно решать все усложняющиеся технологические задачи. Одно из наиболее перспективных направлений импульсное введение энергии в зону сварки.

    1. История создания процесса сварки в со2

Идея сварки в защитном газе была предложена в конце XIX в. Н.Н. Бенардосом. Практическое осуществление данного способа сварки приходится на ХХ в. Дуговая сварка в защитном газе основана на оттеснении воздуха из зоны сварки потоком газа. В качестве защитного газа используют инертные газы: аргон и гелий, активные газы: азот, водород, углекислый газ, а также смеси газов.

Практически впервые сварку в смесях газов осуществили в 20-е гг. ХХ в. в США. Первые сообщения о сварке в инертном газе неплавящимся вольфрамовым электродом появились за рубежом в начале 40-х гг. прошлого века. В нашей стране аналогичный способ сварки появился в конце 40-х гг. В 1949 г. в Институте электросварки был разработан способ сварки угольным электродом в углекислом газе.

Сварка в инертном газе плавящимся электродом была разработана в нашей стране в это же время. В 1952 г. К.В. Любавский и Н.М. Новожилов получили положительные результаты по сварке в углекислом газе плавящимся электродом.

В настоящее время имеется много разновидностей сварки в защитных газах, которые получили широкое распространение в нашей стране и за рубежом.

Интенсивное развитие сварки в защитных газах объясняется ее преимуществами по сравнению с дуговой сваркой покрытыми электродами:

а) высокая степень концентрации нагрева изделия, позволяющая значительно уменьшить зону термического влияния и коробление изделия после сварки;

б) высокая производительность;

в) возможность получения высококачественных соединений из металлов и сплавов различных марок и толщин при различной конфигурации швов и различном расположении их в пространстве;

г) широкая возможность механизации и автоматизации процесса.

1.3 Особенности процесса сварки в со2

При сварке в защитных газах для защиты зоны дуги и расплавленного металла используют газ (рисунок 1.1), подаваемый струей при помощи горелки.

Рисунок 1.1 - Схема процесса:1 - деталь; 2 - дуга; 3 - защитный газ; 4 - сопло;5 - сварочная ванна; 6 - плавящаяся электродная проволока.

В качестве защитных газов используют инертные газы (аргон, гелий и их смеси), не взаимодействующие с металлом при сварке, и активные газы (углекислый газ, водород и др.), взаимодействующие с металлом, а также их смеси. Род защитного газа определяет физические, металлургические и технологические характеристики способа сварки. Защитный газ выбирают в зависимости от рода свариваемых материалов, технологических задач, требований, предъявляемых к сварным соединениям, и других условий.

При сварке плавящимся электродом (рисунок 1.1) дуга горит между электродной проволокой, непрерывно подаваемой в дугу, и изделием. Дуга расплавляет проволоку и кромки изделия, и образуется общая сварочная ванна. По мере перемещения дуги сварочная ванна затвердевает, образуя шов, соединяющий кромки изделия [1].

Процесс сварки - это совокупность физических и электрических явлений, протекающих от начала до окончания сварки. Процесс сварки можно разделить на три основные стадии [1]:

а) установление стабильного течения процесса сварки - это отрезок времени, на протяжении которого происходит установление процесса до заданного режима сварки.

б) стабильное течение процесса - это отрезок времени, на протяжении которого заданный режим сварки сохраняется неизменным и происходит образование образование шва.

в) прекращение процесса сварки - отрезок времени на протяжении которого происходит переход от стабильного течения процесса до обрыва дуги при окончании сварки.