Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Введение в химию.doc
Скачиваний:
69
Добавлен:
01.12.2018
Размер:
2.33 Mб
Скачать

2.1.7. Пероксиды

От оксидов следует отличать пероксиды, например:

H2O

– оксид водорода (вода)

H2O2

– пероксид водорода

Na2O

– оксид натрия

Na2O2

– пероксид натрия

BaO

– оксид бария

BaO2

– пероксид бария

В оксидах и в пероксидах электронная валентность кислорода и число образуемых атомами кислорода химических связей – одинаковое (две связи), и это означает, что электронная валентность, равная числу связей, у кислорода в пекроксидах равна двум. Но стехиометрическая валентность кислорода различная: в оксидах она равна II, а в пероксидах – I. Соответственно степень окисления кислорода в оксидах равна –2, а в пероксидах –1. Это различие объясняется тем, что в молекулах пероксидов имеется химическая связь между атомами кислорода. Отличие пероксидов от оксидов хорошо видно на структурных формулах

Вода H2O

Оксид натрия Na2O

Оксид бария BaO

Пероксид водорода H2O2

Пероксид натрия Na2O2

Пероксид бария BaO2

Число пероксидов ограничено: это пероксид водорода (H2O2) и пероксиды щелочных и щелочноземельных металлов: K2O2, CaO2 и т.д. Имеются сведения о существовании пероксидов магния и цинка, но они неустойчивы и легко разлагаются. Другие элементы пероксидов не образуют.

Пероксиды металлов образуются при взаимодействии щелочных и щелочноземельных металлов с избытком кислорода:

2Na + O2 = Na2O2; Ba + O2 = BaO2

Пероксид водорода получают при взаимодействии пероксидов металлов с кислотами:

BaO2 + H2SO4 = BaSO¯ + H2O2

Пероксиды щелочых и щелочноземельных металлов, подобно соответствующим оксидам, взаимодействуют с водой, но при этом образуется не только щёлочь, но и кислород:

2Na2O2 + 2Н2O = 4NaOН + O2­; 2BaO2 + 2Н2O = 2Ba(OН)2 + O2­

Пероксиды взаимодействуют с кислотными оксидами, при этом образуется соль и кислород. Например, пероксид натрия взаимодействует с углекислым газом по уравнению:

2Na2O2 + 2CO2 = 2Na2CO3 + O2­

На этой реакции основано применение пероксида натрия для регенерации кислорода на космических станциях и подводных лодках.

Пероксиды металлов – твёрдые, а пероксид водорода – жидкое вещество, хорошо растворяющееся в воде. Пероксид водорода – сильный окислитель, на чём основано его применение в ракетных двигателях, для отбеливания тканей и в медицине (дезинфицирующее средство).

2.2. Основания

2.2.1 Классификация оснований

Основаниями называются сложные вещества, в состав которых входят атомы металлов, соединённые с одной или несколькими гидроксогруппами: NaOH, Ca(OH)2, Cr(OH)3 и т.д. Но это определение исключает из класса оснований гидроксид аммония NH4OH, поэтому лучше пользоваться определением на основе теории электролитической диссоциации: основаниями называются электролиты, при диссоциации которых в качестве анионов образуются только гидроксид-ионы:

NaOH = Na+ + OH; NH4OH D NH4+ + OH

По растворимости к воде основания подразделяются на растворимые и нерастворимые.

К растворимым относятся основания щелочных металлов (LiOH, NaOH, KOH, RbOH, RbOH, CsOH, FrOH), щелочноземельных (Ca(OH)2, Sr(OH)2, Ba(OH)2, Ra(OH)2) и гидроксид аммония NH4OH. Свойства этих оснований определяются концентрацией в их растворах гидроксид-ионов.

Гидроксиды щелочных и щелочноземельных металлов – сильные электролиты. Их диссоциация в водных растворах протекает практически необратимо, концентрация OH-ионов в растворах велика, поэтому растворы мыльные на ощупь, они разъедают кожу, изменяют окраску индикаторов: красного лакмуса – в синий цвет, бесцветного фенолфталеина – в малиновый и т.д. Гидроксиды щелочных и щелочноземельных металлов называются щелочами.

Гидроксид аммония – слабый электролит, его диссоциация обратима, поэтому концентрация OH-ионов в растворах этого основания невелика, но достаточна для изменения цвета индикаторов.

Остальные основания практически нерастворимы в воде, ионы OH в их растворах практически отсутствуют, поэтому цвет индикаторов в них не изменяется.

По взаимодействию с другими веществами основания подразделяются на типичные и амфотерные. Типичными являются те основания, которым соответствуют основные оксиды: это все щёлочи, а также Mg(OH)2, La(OH)3, Mn(OH)2 , Bi(OH)3 и др. Амфотерными являются те основания, которым соответствуют амфотерные оксиды. Это Be(OH)2, Zn(OH)2, Al(OH)3, Cr(OH)3, Sn(OH)2, Sn(OH)4, Pb(OH)2, Pb(OH)4, Mn(OH)4 и др.

Необходимо иметь в виду ещё одну классификацию оснований – по числу гидроксогрупп в составе одной формульной единице. Основания с одним гидроксид-ионом называются однокислотными, с двумя – двухкислотными, с тремя – трёхкислотными и с четырьмя – четырёхкислотными. Кислотность основания равна количеству одноосновной кислоты (см. п. 2.3.1), затрачиваемой на реакцию с одним молем данного основания.

На взаимодействие с одним молем однокислотного основания требуется один моль одноосновной кислоты:

NaOH + HCl = NaCl + H2O

Если основание двухкислотное, то требуется два моля кислоты:

Ba(OH)2 + 2HCl = BaCl2 + 2H2O

А если в реакции участвует один моль трёх- или четырёхкислотного основания, то затрачивается три или четыре моля кислоты, соответственно:

Al(OH)3 + 3HCl = AlCl3 + 3H2O; Sn(OH)4 + 4HCl = SnCl4 + 4H2O