
- •1. Основные определения теории автоматического управления
- •3. Системы стабилизации, системы программного управления, следящие системы.
- •Знак означает, что управляемая величина поддерживается на заданном уровне с некоторой ошибкой.
- •5. Преобразование Лапласа. Основные свойства преобразования Лапласа
- •4. Дифференциальные уравнения сау. Уравнения статики. Линеаризация уравнений. Стандартная форма записи линейных дифференциальных уравнений.
- •6. Передаточные функции звеньев сау, их связь с дифференциальными уравнениями
- •9. Вещественная и мнимая частотные характеристики сау, их связь с амплитудной и фазовой частотными характеристиками.
- •8. Математическое описание сау в частотной области. Амплитудная и фазовая частотные характеристики сау
- •10. Логарифмические частотные характеристики сау
- •11. Типовые звенья сау
- •12. Интегрирующие и апериодические звенья, их частотные и переходные характеристики
- •13. Дифференцирующие и форсирующие звенья, их частотные и переходные характеристики
- •14. Колебательные и консервативные звенья, их частотные и переходные характеристики
- •15) Звено запаздывания, его частотные и переходные характеристики
- •12. Интегрирующие и апериодические звенья, их частотные и переходные характеристики
- •13. Дифференцирующие и форсирующие звенья, их частотные и переходные характеристики
- •17. Основные виды соединений звеньев сау, их передаточные функции, частотные характеристики
- •19. Построение частотных характеристик системы по частотным характеристикам звеньев
- •20. Правила построения лах и лфх последовательно соединенных звеньев
- •21. Правила структурных преобразований многоконтурных сау.
- •22. Понятие об устойчивости линейных сау. Необходимое и достаточное условие устойчивости.
- •23. Критерий устойчивости Рауса-Гурвица
- •25. Критерий устойчивости Найквиста. Запасы устойчивости по амплитуде и фазе.
- •26. Логарифмический частотный критерий устойчивости. Определение по лчх запасов устойчивости по амплитуде и фазе.
- •27. Метод д-разбиения построения границ областей устойчивости.
- •37. Основные методы исследования нелинейных сау. Метод фазовой плоскости.
- •28. Оценка качества сау по кривой переходного процесса.
- •29. Оценка качества сау на установившихся режимах. Коэффициенты ошибок. Статические и астатические системы.
- •30. Интегральные оценки качества переходных процессов.
- •31. Способы включения корректирующих устройств.
- •32. Виды обратных связей. Охватывание типовых звеньев жесткой, гибкой и изодромной обратными связями.
- •33. Синтез параметров сау по минимуму интегральной оценки.
- •34. Синтез линейных систем по логарифмическим амплитудно-частотным характеристикам.
- •35. Основные понятия и определения по нелинейным системам.
- •38. Основные виды фазовых траекторий линейных систем второго порядка.
- •39. Основные понятия по Ляпунову об устойчивости нелинейных систем. Основные виды устойчивости нелинейных систем.
- •40. Принципы построения и классификация адаптивных систем.
- •41. Основные виды самонастраивающихся систем. Поисковые и беспоисковые системы.
4. Дифференциальные уравнения сау. Уравнения статики. Линеаризация уравнений. Стандартная форма записи линейных дифференциальных уравнений.
В
общем случае звенья и системы описывают
нелинейными дифференциальными уравнениями
произвольного порядка. Под звеном
понимается математическая модель
элемента. Для примера рассмотрим звено,
которое можно описать дифференциальным
уравнением второго порядка
где y
– выходная величина, u
и f
– входные величины, и – первые
производные по времени, – вторая
производная по времени.
Уравнение (2.1), описывающее процессы в звене при произвольных входных воздействиях, называют уравнением динамики. Пусть при постоянных входных величинах u = u0 и f = f0 процесс в звене с течением времени установится: выходная величина примет постоянное значение y = y0. Тогда (2.1) примет вид
Это
уравнение описывает статический или
установившийся режим и его называют
уравнением
статики
Статический режим можно описать графически с помощью статических характеристик. Статической характеристикой звена или элемента (а также системы) называют зависимость выходной величины от входной в статическом режиме.
Главным упрощением, к которому следует стремиться при выводе уравнений звеньев системы, является их линеаризация, т. е. описание линейными дифференциальными уравнениями. Линеаризация нелинейности, содержащейся в уравнении звена, заключается в замене этой нелинейности приближенной линейной зависимостью
Другой
формой записи линейных уравнений звеньев
является запись с помощью передаточной
функции. Уравнение (2.7) при этом принимает
вид: (2.8или
В общем случае звено системы автоматического управления, имеющее п входов, описывается дифференциальным уравнением
(2.10)
или в другом виде
(2.11)
Здесьxi
— входные воздействия на звено (i
= 1, 2, ..., n);
Q(p)
и Ri(р)
— полиномы относительно р;
—передаточная
функция звена для i-го
входного воздействия.
Стандартная форма записи линейных дифференциальных уравнений. Обычно линейные дифференциальные уравнения с постоянными коэффициентами не выше второго порядка записывают в стандартной форме. При этом члены, содержащие выходную величину и ее производные, записывают в левой части уравнения, а все остальные члены — в правой; коэффициент при выходной величине делают равным единице. Если в правой части содержатся производные, то члены, содержащие какую-либо одну входную величину и ее производные, объединяют в одну группу и коэффициент при соответствующей входной величине выносят за скобки.
Уравнение
(2.26) в стандартной форме принимает вид
(2.36)
Где
В уравнении (2.36) постоянные Т0, Т1 и Т2 имеют размерность времени и их называют постоянными времени, а коэффициенты k1 и k2 — передаточными коэффициентами. Если исходное уравнение (2.26) не содержит y (a2 = 0), то в стандартной форме коэффициент при производной y должен быть равен единице: обе части уравнения делят на коэффициент a1.
6. Передаточные функции звеньев сау, их связь с дифференциальными уравнениями
Отношение оператора воздействия к собственному оператору называют передаточной функцией или передаточной функцией в операторной форме. Звено, описываемое уравнением (2.26)
или,
что тоже самое, уравнениями (2.27) — (2.29),
можно характеризовать двумя передаточными
функциями: передаточной функцией W1(p)
по входной величине и,
т. е.
(2.30)
и передаточной функцией W2(p) по входной величине f, т.е.
(2.31)
Используя передаточные функции, уравнение (2.26) записывают в виде
(2.32)
Уравнения (2.28), (2.29) и (2.32) называют уравнениями в символической или операторной форме записи.
Передаточной
функцией или передаточной функцией в
форме изображений Лапласаназывают
отношение изображения выходной величины
к изображению входной величины при
нулевых начальных условиях. Если звено
(система) имеет несколько входов, то при
определении передаточной функции
относительно какой-либо одной входной
величины остальные входные величины
полагают равными нулю.