
- •1. Основные определения теории автоматического управления
- •3. Системы стабилизации, системы программного управления, следящие системы.
- •Знак означает, что управляемая величина поддерживается на заданном уровне с некоторой ошибкой.
- •5. Преобразование Лапласа. Основные свойства преобразования Лапласа
- •4. Дифференциальные уравнения сау. Уравнения статики. Линеаризация уравнений. Стандартная форма записи линейных дифференциальных уравнений.
- •6. Передаточные функции звеньев сау, их связь с дифференциальными уравнениями
- •9. Вещественная и мнимая частотные характеристики сау, их связь с амплитудной и фазовой частотными характеристиками.
- •8. Математическое описание сау в частотной области. Амплитудная и фазовая частотные характеристики сау
- •10. Логарифмические частотные характеристики сау
- •11. Типовые звенья сау
- •12. Интегрирующие и апериодические звенья, их частотные и переходные характеристики
- •13. Дифференцирующие и форсирующие звенья, их частотные и переходные характеристики
- •14. Колебательные и консервативные звенья, их частотные и переходные характеристики
- •15) Звено запаздывания, его частотные и переходные характеристики
- •12. Интегрирующие и апериодические звенья, их частотные и переходные характеристики
- •13. Дифференцирующие и форсирующие звенья, их частотные и переходные характеристики
- •17. Основные виды соединений звеньев сау, их передаточные функции, частотные характеристики
- •19. Построение частотных характеристик системы по частотным характеристикам звеньев
- •20. Правила построения лах и лфх последовательно соединенных звеньев
- •21. Правила структурных преобразований многоконтурных сау.
- •22. Понятие об устойчивости линейных сау. Необходимое и достаточное условие устойчивости.
- •23. Критерий устойчивости Рауса-Гурвица
- •25. Критерий устойчивости Найквиста. Запасы устойчивости по амплитуде и фазе.
- •26. Логарифмический частотный критерий устойчивости. Определение по лчх запасов устойчивости по амплитуде и фазе.
- •27. Метод д-разбиения построения границ областей устойчивости.
- •37. Основные методы исследования нелинейных сау. Метод фазовой плоскости.
- •28. Оценка качества сау по кривой переходного процесса.
- •29. Оценка качества сау на установившихся режимах. Коэффициенты ошибок. Статические и астатические системы.
- •30. Интегральные оценки качества переходных процессов.
- •31. Способы включения корректирующих устройств.
- •32. Виды обратных связей. Охватывание типовых звеньев жесткой, гибкой и изодромной обратными связями.
- •33. Синтез параметров сау по минимуму интегральной оценки.
- •34. Синтез линейных систем по логарифмическим амплитудно-частотным характеристикам.
- •35. Основные понятия и определения по нелинейным системам.
- •38. Основные виды фазовых траекторий линейных систем второго порядка.
- •39. Основные понятия по Ляпунову об устойчивости нелинейных систем. Основные виды устойчивости нелинейных систем.
- •40. Принципы построения и классификация адаптивных систем.
- •41. Основные виды самонастраивающихся систем. Поисковые и беспоисковые системы.
39. Основные понятия по Ляпунову об устойчивости нелинейных систем. Основные виды устойчивости нелинейных систем.
Устойчивость
по Ляпунову: «Невозмущенное движение
устойчиво, если при достаточно малых
начальных возмущениях вызванное ими
возмущенное движение сколь угодно мало
отличается от невозмущенного; при этом
движение асимптотически устойчиво,
если при
t
возмущенное движение стремится к
невозмущенному.»
Невозмущенным движением системы - одно из возможных расчетных движений системы при некоторых определенных начальных условиях и заданном внешнем воздействии. Всякое другое движение называется возмущенным. Можно считать, что любое возмущенное движение получается за счет приложения к системе кратковременного внешнего возмущения при t = 0.
От наличия внешних воздействий на систему, системы управления могут быть разделены на автономные и неавтономные. В автономных системах внешние воздействия отсутствуют. К автономной системе может быть сведена любая из непрерывных систем при не зависящем от времени внешнем воздействии. В неавтономных системах существуют зависящие от времени внешние воздействия.
Так как в автономных нелинейных системах наиболее характерными: являются два процесса равновесие и автоколебания, то для них рассматриваются два различных понятия устойчивости: устойчивость равновесия и устойчивость автоколебаний. Для неавтономных систем существует понятие устойчивости процесса, обусловленного внешним воздействием.
Состояние равновесия и установившийся режим автоколебаний можно рассматривать как важные частные случаи невозмущенных движений автономной системы.
Для общего суждения об устойчивости движения пользуются понятием устойчивости, данным А. М. Ляпуновым: движение устойчиво, если для любой сколь угодно малой заданной области допустимых отклонений k от точки k = 0 можно указать область начальных значений лежащую внутри области и обладающую тем свойством, что ни одно возмущенное движение, начавшееся внутри области никогда не достигнет границы области .
Области
и
на плоскости 1
и 2
схематически показаны на рис. 18.1
Для
характеристики устойчивости кроме
областей
и
удобно ввести понятие области
установившихся значений разности
возмущенного и невозмущенного движений.
При t
(18.3)
Вид области зависит от области начальных отклонений. Нужно отметить два практически важных частных случая областей . В первом случае = 0, т. е.
(18.4)
Такое движение называют асимптотически устойчивым. Если для выполнения равенства (18.4) требуется, чтобы область начальных отклонений была достаточно мала, то говорят об асимптотической устойчивости в малом. Если эта область может иметь конечные размеры, то говорят об асимптотической устойчивости в большом. Если, наконец, равенство (18.4) выполняется при сколь угодно больших начальных отклонениях, то говорят об асимптотической устойчивости в целом.
Во втором частном случае область представляет собой отрезок на оси 1. В этом случае равенство (18.4) не выполняется при сколь угодно малых отклонениях от равновесия и устойчивость относится к неасимптотической.
Для суждения об устойчивости автоколебаний вводится понятие орбитальной устойчивости.
Периодическое движение (автоколебание) в пространстве состояний изображается некоторой замкнутой кривой Г. Представляя любую траекторию геометрическим местом конца вектора x(t), можно для любого момента времени t определить кратчайшее расстояние ох конца вектора x(t) до кривой Г, которое обозначим [x(t), Г].
Под орбитально асимптотически устойчивым периодическим движением в автономной системе (автоколебанием) будем понимать такое движение, для которого
. (18.5)
Это условие можно выразить с помощью понятия невозмущенного движения, если учесть возможный сдвиг по времени между xH(t) и х(t).
Обозначив
, (18.6)
можно условие орбитальной асимптотической устойчивости сформулировать следующим образом: существуют такие положительные вещественные значения = 0, для которых
(18.7)
Невыполнение условия (18.5) или (18.7) приводит к нарушению орбитальной асимптотической устойчивости.