Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Dzh_E'd_Morgan,_Me'gid_S.Mixail._Klinicheskaya_....doc
Скачиваний:
20
Добавлен:
29.10.2018
Размер:
5.49 Mб
Скачать

2. Химические медиаторы боли

Некоторые нейропептиды и активирующие (воз­будительные) аминокислоты являются нейро-трансмиттерами при передаче ноцицептивного импульса (рис. 18-5). Подавляющее большинство нейронов содержат несколько нейротрансмитте-ров, которые высвобождаются одновременно. Важ­нейшими из них являются субстанция P и пептид, ассоциированный с геном кальцитонина. Наиболее важная активирующая аминокислота — это глюта-мат (глютаминовая кислота).

Субстанция P — это пептид, состоящий из 11 аминокислот, который синтезируется и высво­бождается первыми нейронами в периферических тканях и в задних рогах. Активируя рецепторы NK-1, субстанция P облегчает передачу импульса по пу­тям проведения болевой чувствительности. На пе­риферии нейроны, высвобождающие субстанцию P, посылают коллатерали к кровеносным сосудам, по­товым железам, волосяным фолликулам и тучным клеткам кожи. Субстанция P вызывает сенситиза-цию ноцицепторов, высвобождение гистамина из тучных клеток и серотонина из тромбоцитов. Кроме того, субстанция P является мощным вазодилатато-ром и хемоаттрактантом для лейкоцитов. Нейроны, высвобождающие субстанцию P, иннервируют внутренние органы и посылают коллатерали в узлы симпатического ствола. Следовательно, интенсив­ная стимуляция внутренних органов может не­посредственно вызвать мощную импульсацию по постганглионарным симпатическим волокнам.

На окончаниях немиелинизированных перифе­рических нервов и в окружающих тканях обнару­жены опиатные и α2-адренорецепторы. Хотя их физиологическое значение до конца не выяснено, именно присутствием данных рецепторов можно объяснить аналгезию от аппликации опиоидов на периферии, особенно на фоне воспаления.

3. Модуляция боли

Модуляция боли происходит на периферии в ho-цицепторах, в спинном мозге и в супраспинальных структурах. Модуляция может вызвать как инги-бирование (подавление восприятия), так и усиле­ние (облегчение восприятия) боли.

Периферическая модуляция

При повторной стимуляции чувствительность но­цицепторов и ноцицептивных нейронов возраста­ет: этот феномен носит название сенситизации. Сенситизация может проявляться как усиление нейрональной реакции на ноцицептивный стимул, а также как появление реакции на другие стимулы, в том числе неноцицептивные.

А. Первичная гипералгезия. Сенситизация но­цицепторов сопровождается снижением порога возбуждения, увеличением частоты импульсации при стимуле той же интенсивности, сокращением латентного периода, а также спонтанной активаци­ей после прекращения стимуляции. Подобная Сенситизация обычно происходит при травме и последующем воздействии тепла. Первичная гипе­ралгезия опосредуется алгогенами, которые выс­вобождаются из поврежденных тканей. Гистамин выделяется из тучных клеток, базофилов и тром­боцитов, в то время как серотонин — из тучных клеток и тромбоцитов. Брадикинин высвобождается из тканей в результате активации XII фактора свертывающей системы крови. Воздействуя на специфические рецепторы B1 и B2, брадикинин ак­тивирует свободные нервные окончания.

При повреждении тканей фосфолипаза A2 воз­действует на фосфолипиды клеточных мембран, что приводит к образованию арахидоновой кисло­ты (рис. 18-3). Циклооксигеназа катализирует ее превращение в эндопероксиды, которые в ходе дальнейших химических реакций трансформиру­ются в простациклин и простагландин E2 (PGE2). Простагландин E2 непосредственно активирует свободные нервные окончания, в то время как про­стациклин усиливает отек тканей, вызванный бра-дикинином. Липоксигеназа превращает арахидо-новую кислоту в гидроперекисные соединения, из которых образуются лейкотриены. Значение по­следних пока недостаточно ясно, но установлено, что они потенцируют некоторые типы боли. Аце-тилсалициловая кислота (аспирин), ацетамино-фен и нестероидные противовоспалительные сред­ства (HПBC) дают аналгетический эффект, ингибируя циклооксигеназу. Кортикостероиды вы­зывают аналгезию, ингибируя фосфолипазу A2 и об­разование простагландинов.

Б. Вторичная гипералгезия. Нейрогенное вос­паление, называемое также вторичной гиперал-гезией, играет важную роль в периферической сенситизации при повреждении. Вторичная гипе­ралгезия проявляется триадой: гиперемия вокруг места повреждения, локальный отек тканей, сенси-тизация к ноцицептивным стимулам. Вторичная гипералгезия обусловлена главным образом антидромным высвобождением субстанции P и, воз­можно, пептида, ассоциированного с геном каль-цитонина, из коллатеральных аксонов первых аф­ферентных нейронов. Субстанция P вызывает высвобождение гистамина и серотонина, вазодила-тацию, отек тканей и стимулирует образование лейкотриенов. Нейрогенное происхождение этой реакции подтверждается следующими фактами: 1) она возникает при ортодромной стимуляции чувствительного нерва; 2) она не наблюдается при денервации кожи; 3) ее можно ослабить инъекцией местного анестетика (например, лидокаина). Кап-саицин — химическое соединение, получаемое из красного перца,— вызывает дегрануляцию и исто­щение субстанции P. Аппликация капсаицина ос­лабляет нейрогенное воспаление и может быть по­лезна при постгерпетической невралгии.

Центральная модуляция

А. Усиление боли (облегчение восприятия).

В спинном мозге существуют по крайней мере три механизма центральной сенситизации:

1. "Реакция испуга" (см. выше) и сенситизация вторых нейронов пути болевой чувствитель­ности. При повторяющейся стимуляции час­тота импульсации нейронов широкого ди­намизма ступенчато возрастает, даже если интенсивность повторного стимула не увели­чивается. Кроме того, для нейронов широкого динамизма характерна спонтанная активация даже после прекращения поступления им­пульсов по афферентным волокнам типа С.

2. Расширение рецепторных полей. Вторые аф­ферентные нейроны, расположенные в зад­них рогах, расширяют свои рецепторные поля таким образом, что окружающие их нейроны отвечают на те стимулы, к которым были до того интактны.

3. Гипервозбудимость сгибательных рефлексов. Усиление сгибательных рефлексов наблюда­ется как ипсилатерально, так и контралате-рально.

Рис. 18-3. Фосфолипаза С (ФЛ С) катализирует гидролиз фосфатидилинозитола-4,5-бифосфата (ФИФ2), при этом образуются инозитолтрифосфат (ИФ3)и диацилглицерол (ДАГ). Важную роль играет протеинкиназа С (ПК С). Фос­фолипаза A2 (ФЛ A2) катализирует превращение фосфатидилхолина (ФХ) в арахидоновую кислоту (AK)

К нейромедиаторам центральной сенситизации от­носятся субстанция P, пептид, ассоциированный с геном кальцитонина, вазоинтестинальный пеп­тид, холецистокинин, ангиотензин, аланин, а так­же возбудительные аминокислоты — L-глютамат и L-аспартат. На мембране нейронов находятся ре­цепторы, связанные с G-белком. Нейромедиаторы взаимодействуют с этими рецепторами, что изме­няет возбудимость мембраны нейрона. Тонкие ме­ханизмы этого взаимодействия включают актива­цию внутриклеточных вторичных мессенджеров, фосфорилирование белков, высвобождение ионов кальция из внутриклеточных депо (см. рис. 18-3).

Активируя NMDA- и нeNMDА-рецепторные ме­ханизмы, глютамат и аспартат играют важную роль в процессе "реакции испуга" (NMDA — это N-метил D-аспартат). Полагают, что эти аминокислоты в значительной степени ответственны за индукцию и поддержание центральной сенситизации. Актива­ция NMDA-рецепторов увеличивает концентрацию внутриклеточного кальция в спинномозговых ней­ронах и активизирует фосфолипазу С (ФЛ С). Воз­росшая концентрация внутриклеточного кальция приводит к активации фосфолипазы A2 (ФЛ A2), которая катализирует превращение фосфатидилхо-лина (ФХ) в арахидоновую кислоту (AK), из кото­рой, в свою очередь, образуются простагландины. Фосфолипаза С (ФЛ С) катализирует гидролиз фосфатидилинозитола-4,5-бифосфата (ФИФ2) на инозитолтрифосфат (ИФ3) и диацилглицерол (ДАГ), которые являются вторичными мессендже-рами. ДАГ активирует протеинкиназу С (ПК С).

Активация NMDA-рецепторов, кроме того, ин­дуцирует синтетазу оксида азота и, следовательно, способствует образованию этого соединения. Про­стагландины и оксид азота облегчают высвобожде­ние возбудительных аминокислот в спинном мозге. Следовательно, такие ингибиторы циклооксигена-зы, как ацетилсалициловая кислота и нестероидные противовоспалительные препараты, дают важный аналгегпический эффект на уровне спинного мозга.

Б. Ослабление боли (ингибирование, подавле­ние болевой чувствительности). Проведение ноци-цептивного импульса в спинном мозге может быть

ингибировано сегментарной активностью непосред­ственно на уровне спинного мозга, а также нисходя­щими влияниями из супраспинальных центров.

1. Сегментарное ингибирование. Активация крупных афферентных волокон, опосредующих эпикритическую (неноцицептивную) чувствитель­ность, ингибирует активность нейронов широкого динамизма и проведение импульсов по спинотала-мическому пути. Кроме того, ноцицептивная сти­муляция в одной области ингибирует активность нейронов широкого динамизма и, соответственно, боль в другой области тела. Эти наблюдения под­крепляют "шлюзовую" теорию распространения болевых импульсов в спинном мозге.

Глицин и γ-аминомасляная кислота (ГАМК) -это аминокислоты, которые являются тормозными нейромедиаторами. Они играют важную роль в сег-ментарном ингибировании болевых ощущений на уровне спинного мозга. Антагонисты глицина и γ-аминомасляной кислоты вызывают выраженную активацию нейронов широкого динамизма, что при­водит к аллодинии и гиперестезии. Существуют два подтипа ГАМК-рецепторов: ГАМКА, агонистом ко­торых является мусцимол, и ГАМКВ, агонистом которых служит баклофен. Сегментарное ингибиро­вание опосредовано через ГАМКв-рецепторы, акти­вация которых ведет к повышению проницаемости клеточной мембраны для ионов калия. ГАМКА-ре-цепторы функционируют как канал для ионов хлора, их активация увеличивает проницаемость мембраны для Сl-. Бензодиазепины потенцируют влияние аго-нистов на ГАМКА-рецепторы. Активация глицино­вых рецепторов также увеличивает проницаемость мембраны нервной клетки для ионов хлора. Стрих­нин и столбнячный токсин являются антагонистами глициновых рецепторов. Кроме того, глицин стиму­лирует NMDA-рецепторы, поэтому эффекты, кото­рые он дает, сложнее эффектов ГАМК.

Аденозин тоже модулирует ноцицептивную ак­тивность в задних рогах спинного мозга. Известны по меньшей мере два рецептора: A1, активация кото­рого ингибирует аденилатциклазу, и A2, стимуляция которого, напротив, ее активирует. Антиноцицептив-ное действие аденозина проявляется через A1-рецеп­торы. Метилксантины, ингибируя фосфодиэстеразу, блокируют антиноцицептивный эффект аденозина.

2. Супраспинальное ингибирование. Некоторые супраспинальные структуры посылают волокна в спинной мозг, ингибируя передачу болевых им­пульсов в задних рогах. Эти структуры включают центральное серое вещество (оно окружает водо­провод мозга), ретикулярную формацию и ядро шва. Стимуляция центрального серого вещества вызыва­ет у человека аналгезию всего тела. Аксоны этих нисходящих путей оказывают ингибирующее влия­ние — как пресинаптическое (на первые нейроны путей проведения болевой чувствительности), так и постсинаптическое (на вторые и вставочные нейро­ны). Антиноцицептивное действие опосредовано че­рез α2-адренорецепторы, серотониновые рецепторы, а также μ-, δ- и χ-опиатные рецепторы. Роль моно­аминов в ингибировании боли объясняет аналгети-ческий эффект антидепрессантов, которые блокиру­ют обратный захват катехоламинов и серотонина. Стимуляция этих рецепторов (которые также связа­ны с G-белками) активирует вторичные мессендже-ры, что открывает калиевые каналы и ингибирует высвобождение кальция из внеклеточных депо.

Антиноцицептивные нисходящие адренергичес-кие пути начинаются главным образом в сером ве­ществе коры и ретикулярной формации. Норадре-налин опосредует антиноцицептивный эффект через активацию пре- и постсинаптических α2-ад-ренорецепторов. По крайней мере часть аксонов из серого вещества коры переключаются на нейронах ядра шва и ретикулярной формации продолгова­того мозга; из ядра шва серотонинергические во­локна следуют в составе дорсолатерального кана­тика к нейронам задних рогов спинного мозга и ингибируют их активность.

Эндогенная опиатная система (представленная главным образом ядром шва и ретикулярной фор­мацией) действует через метионин-энкефалин, лейцин-энкефалин и β-эндорфин, антагонистом которых является налоксон. Эти опиоиды оказы­вают пресинаптическое действие, вызывая гипер-поляризацию первых нейронов и ингибируя высвобождение субстанции P; они также обеспе­чивают некоторое постсинаптическое ингибирова-ние. В противоположность им экзогенные опиоиды. оказывают главным образом постсинаптическое действие, ингибируя вторые или вставочные ней­роны в студенистом веществе.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]