
- •Тема 1. Основные этапы решения задач на эвм 5
- •Тема 2. Жизненный цикл программы. Критерии качества программы. 15
- •Тема 3. Схемы алгоритмов, данных, программ 29
- •Тема 1. Основные этапы решения задач на эвм Постановка задачи разработки программного обеспечения
- •Анализ формальной постановки задачи
- •Выбор или разработка математической модели и метода решения
- •Разработка алгоритма
- •Базовые структуры алгоритма
- •3.2. Цикл с постусловием.
- •Тема 2. Жизненный цикл программы. Критерии качества программы.
- •Техническое задание и спецификация программы
- •Разработка проекта программной системы
- •Программирование (кодирование) или программная реализация алгоритмов
- •Тестирование и отладка
- •Эксплуатация и сопровождение
- •Критерии качества программного обеспечения
- •Тема 3. Схемы алгоритмов, данных, программ
- •Символы данных
- •Отображает данные, вводимые в ручную, во время обработки с устройств любого типа (клавиатура, переключатели, кнопки, световое перо, полоски со штрих кодом и т.Д.).
- •Символы процесса
- •Символы линий
- •Специальные символы
- •Правила применения символов в схемах
- •Правила выполнения соединений
- •Специальные условные обозначения
- •Тема 4. Язык программирования высокого уровня Си Общие сведения о языке Си
- •Алфавит языка Си
- •Грамматика для описания языка, синтаксические диаграммы
- •Структура программы на языке Си
- •Void main() //функция main
- •Имена объектов в программе
- •Выражения, операции и приоритеты
- •Тема 5. Стандартные типы данных
- •Тема 6. Составные типы данных Данные регулярного типа (массивы)
- •Int b [n]; // вектор из 10 целых элементов
- •9 Strcpy(s1,&s2[k]); //копирует правую подстроку из s2 в s1
- •9 Strncpy(s1,&s[2],n); //копирует среднюю подстроку из s2 в s1
- •Void main() /*пример функции*/
- •If(strcmp(s, "пароль"))
- •If(!strсmp("quit", s)) break;
- •Данные комбинированного типа (структуры)
- •Int month;
- •Int year;
- •Перечисления
- •Объединения
- •Указатели
- •Void *addres;
- •Int arrey[25];
- •Тема 7. Представление основных управляющих структур программирования Оператор присваивания
- •Составной оператор
- •Оператор перехода Goto
- •Условный оператор If
- •Оператор выбора switch
- •Операторы цикла while, do – while, for
- •Int I,j,imax,jmax,imin,jmin;
- •Операторы прерывания циклов
- •If (!flag) printf("Отрицательных чисел нет"); Форматированный ввод данных
- •Форматированный вывод данных
- •Преобразование типов
- •Инициализация данных
- •Тема 8. Функции
- •Определение функций в языке Си
- •Int rus (unsigned char r)
- •Void change (int X, int y)
- •Void change (int *X, int *y)
- •Вызов функций в языке Си
- •Int *fun (intx,int *y);
- •Int main()
- •Рекурсивные функции
- •Int nodWhile (int m, int n)
- •Int nodWhile (int m, int n)
- •Int main()
- •Int fCalculated[nFib];
- •Int FibDinam (int n)
- •Int main()
- •Int Summa(int n, int a[100])
- •Int main()
- •Тема 9. Файлы
- •Int fseek(file *fp, long count, int access);
- •Int ferror(file *fp);
- •Int remove(char *file_name);
- •Void rewind(file *fp);
- •Int main()
- •Тема 10. Приемы программирования. Примеры алгоритмов Алгоритмы сортировки
- •Исходный массив
- •Void SortBubble (int count, int* pArr)
- •Исходный массив
- •Void SortSelect(int count, int* pArr)
- •Int i1,temp;
- •Int jmax;
- •Void SortInsert (int count, int* pArr)
- •Int temp, j;
- •Алгоритмы поиска
- •Int bfSearch(char *s, char *p)
- •Int bmtarr[255];
- •Int bmSearch(int startpos, char *s, char *p)
- •Int BinarySearch (int lb, int ub, int key, int* pArr)
- •Динамические структуры данных
- •Линейные списки
- •Int value; // значение элемента
- •Void PrintSearchList (list head, int val)
- •If (lfound) printf("Элемент в списке найден!");
- •Стек, очередь, дек
- •Int prior(char);
- •Void main(void)
- •Int k, point;
- •Int prior(char a)
- •Деревья
- •Int info; //информационное поле
- •Приложение 1. Стандартные библиотеки языка Си
- •Приложение 2. Примеры реализации алгоритмов
- •Int main()
- •Int arr[10]; // Массив arr из 10 целочисленных элементов
- •Int I; // Счетчик для циклов
- •Int main()
- •Int main()
- •Int main()
- •Int Temp;
- •Int CurrentYear, Diff, Day1, Day2, Month1, Month2, I, Visokos;
- •Int main()
- •InsertSort(d, max); // Сортируем массив b методом вставок
- •Int number;
- •Int main()
- •Не рекурсивный алгоритм решения задачи Ханойская башня.
- •Int main()
- •Рекурсивный алгоритм решения задачи Ханойская башня.
- •Void move(int I, int j, int d)
- •Void hanoy(int I, int j, int k, int d)
- •Int main()
- •Int Cubic(double *X,double a,double b,double c);
- •Int Cubic (double *X, double a, double b, double c)
- •Void lu_backsub (double **a, int n, int *indx, double *b)
- •Void lu_invert (double **a, int n, int *indx, double **inv, double *col)
- •Int BracketRoot (double x0, double *a, double *b, double d0, double di, double dmax, double (*fun)(double));
- •Int BracketRoot (double x0, double *a, double *b, double d0,
- •Int main()
- •Int expo, I;
- •If (expo & 1)
- •Int main()
- •Приложение 3. Лабораторные работы Лабораторная работа №1
- •Лабораторная работа №2
- •Лабораторная работа №3
- •Лабораторная работа №4
- •Лабораторная работа №5
- •Лабораторная работа №6
- •Лабораторная работа №7
- •Лабораторная работа №8
- •Лабораторная работа №9
- •Лабораторная работа №10
- •Лабораторная работа №11
- •Лабораторная работа №12
- •Список литературы
Void PrintSearchList (list head, int val)
//Head – указатель на голову списка, str – искомая строка
{
bool lfound = false; // признак того, что строка найдена
tail = &head; //начинаем с головы списка
while (tail != NULL)// если указатель на текущий элемент списка не пуст
{
printf("%d\n", tail->value); //выводим информационное поле списка
if (tail->value = val) lfound = true; //совпадает с искомой строкой?
tail = tail->next; //переходим к следующему узлу списка
}
If (lfound) printf("Элемент в списке найден!");
else printf("Элемент в списке не найден!");
}
list GotoNode (list head, int cnt)
//Cnt – номер узла, начиная с 1, к которому нужно перейти
{
int i = 1;
tail = &head;
while ((tail->next != NULL) && (i < cnt))
{
i++;
tail = tail->next;
}
return(*tail);
}
Стек, очередь, дек
Стеком (англ. stack) называется хранилище данных, в котором можно работать только с одним элементом: тем, который был добавлен в стек последним. Говорят, что стек реализует дисциплину обслуживания LIFO (Last In – First Out, последним пришел – первым ушел). Физически стек может быть реализован на основе массива или на основе односвязанного линейного списка, в котором все операции осуществляются только с головой списка. Этот элемент в стеке называется верхушкой стека и на него указывает указатель стека ptrStack (рис.43). Если указатель стека – пустой, то стек считается пустым.
Стек должен поддерживать следующие операции:
push – добавить (положить) в верхушку стека новый элемент;
pop – извлечь из верхушки стека элемент;
isEmpty – проверка, пуст ли стек;
top – узнать (прочитать) значение верхушки стека (не удаляя ее);
size – узнать количество элементов в стеке;
clear – очистить стек (удалить из него все элементы).
Рис.43.
Графическое изображение стека
Поскольку стек с точки зрения программной реализации является частным случаем односвязного линейного списка, то на языке Паскаль стек можно описать с помощью следующих структур:
struct st // объявление типа stack
{
char info; информационная часть
struct st *ps; // указатель на предыдущий (более нижний) элемент стека
} stack;
Стек имеет очень широкое применение в программировании. Особенно часто он используется при решении системных задач, задач компиляции и анализа выражений. Рассмотрим наиболее характерный пример использования стека при переводе выражений в обратную польскую запись.
Обратная польская запись (ОПЗ) – это способ записи выражений (как правило алгебраических) в так называемом постфиксном (или суффиксном) виде, т.е. в таком виде, когда сначала записываются все операнды, а потом выполняемые над ними операции, т.е. для обычных бинарных операций сложения, вычитания, умножения и деления знак операции располагается после операндов, а не между ними как в привычном «инфиксном» виде. Одна из особенностей ОПЗ – отсутствие скобок, что позволяет вычислять ОПЗ за один проход слева направо. ОПЗ как правило используется в трансляторах и компиляторах для преобразования выражений в машинный код, их последующего вычисления, а также для анализа и трансляции синтаксических конструкций языка к виду, удобному для генерации машинного кода.
Пример 35. Представим выражение (a+b)/(c/a*c – e*d) в постфиксном виде:
ОПЗ: ab+ca/c*ed*–/. Вычислим ОПЗ слева на право, при вычислении пользуемся правилом: «в операции участвуют два операнда, расположенные слева от знака операции».
-
Первое вычисление: R1 = ab+ = a+b, подставляем в исходную строку вместо ab+ вычисленный результат R1 получается ОПЗ: R1ca/c*ed*–/.
-
Второе действие: R2 = ca/ = c/a
ОПЗ: R1R2c*ed*–/
-
Третье действие: R3 = R2c* = R2*c = c/a*c
ОПЗ: R1R3ed*–/
-
Четвертое действие: R4 = ed* = e*d
ОПЗ: R1R3R4–/
-
Пятое действие: R5 = R3R4– = R3–R4 = c/a*c–e*d
ОПЗ: R1R5/
-
Шестое действие: R6 = R1R5/ = R1/R5=(a+b)/(c/a*c–e*d)
ОПЗ: R6
ОПЗ вычислено и его значением стало значение выражения R6.
Наиболе известным алгоритмом перевода простого алгебраического выражения в ОПЗ является алгоритм Дейкстры (Э́дсгер Ви́бе Де́йкстра, 1930–2002, – выдающийся нидерландский ученый, идеи которого оказали огромное влияние на развитие компьютерной индустрии). Идея алгоритма основывается на использовании стека и анализе приоритета операций и заключается в следующем:
-
Исходная строка просматривается посимвольно, слева направо до достижения конца строки.
-
Если встречается символ операция, то эта операция при определенных условиях помещается в стек (затем при определенных условиях операции выталкиваются в выходную строку).
-
Если встречаются символы операндов, то они из входной строки поступают сразу в выходную строку.
-
Если встречается открывающаяся скобка, то она всегда помещается в стек.
-
Закрывающаяся скобка ни в стек, ни в выходную строку не помещается. Когда она встречается во входной строке, то из стека выталкиваются все символы до первой встречной открывающейся скобки включительно. При этом знаки операций выталкиваются в выходную строку, а открывающаяся скобка просто удаляется из стека.
-
Необходимо использовать следующие приоритеты операций (табл. 17). Чем больше значение приоритета, тем сильнее операция связывает операнды:
Таблица 17.
Приоритеты операций для вычисления ОПЗ
Операции |
( |
+ |
– |
* |
/ |
Приоритет |
0 |
1 |
1 |
2 |
2 |
-
Если во входной строке текущий символ – знак операции, то сравниваются приоритеты операций из строки и верхушки стека.
-
Если приоритет операции из входной строки больше приоритета операции из верхушки стека, то операция из входной строки стека перемещается в стек.
-
В противном случае из стека выталкиваются все операции с приоритетами большими либо равными приоритету операции из входной строки. После чего операция из входной строки помещается в стек.
-
При встрече конца входной строки содержимое стека выталкивается в выходную строку.
Пример 36. Напишем программу перевода входной строки в ОПЗ.
/* Описание стpуктуpы(элемента стека) */
struct st
{
char c;
struct st *next;
};
struct st *push(struct st *, char);
/* Пpототипы функций */
char DEL(struct st **);