
- •Биолого-почвенный факультет
- •Строение основных элементов нервной ткани (нейронов и глиальных клеток).
- •1.1.1. Особенности морфологии и ультраструктуры нервных клеток, их отростков.
- •1.1.2. Функциональное значение особенностей морфологической организации дендритов и аксонов в деятельности нейрона
- •1.1.3. Синапс
- •Структура синапсов
- •Типы синапсов
- •1.2. Медиаторы
- •1.2. Классификация нейронов
- •1.3. Глия
- •1.4 Строение нервов
- •Тема 2. Онтогенез и филогенез нервной системы (4 часа)
- •2.1. Онтогенез
- •2.1.1. Эмбриогенез нервной системы
- •2.1.2. Постнатальный онтогенез
- •2.2. Филогенез
- •2.2.1. Нервная система беспозвоночных животных
- •2.2.2. Нервная система позвоночных животных
- •Тема 3. Спинной мозг (4 часа)
- •3.1. Морфология спинного мозга
- •3.1.1. Серое вещество спинного мозга
- •3.1.2. Белое вещество спинного мозга
- •3.2. Рефлекторная дуга
- •3.3. Филогенез
- •3.4. Онтогенез.
- •Тема 4. Продолговатый и задний мозг (4 часа)
- •4.1. Продолговатый мозг
- •4.1.1. Морфология продолговатого мозга
- •4.1.2. Дыхательный центр
- •4.1.3. Сосудодвигательный центр
- •4.1.4. Сосания центр
- •4.1.5. Глотания центр
- •4.1.6. Жевательный центр
- •4.1.7. Рвотный центр
- •4.1.8. Слюноотделения центр
- •4.1.9. Чихания центр
- •4.1.10. Кашля центр
- •4.1.11. Мигания центр
- •4.1.13. Онтогенез
- •4.2. Задний мозг
- •4.2.1. Варолиев мост
- •Филогенез
- •Онтогенез
- •4.2.2. Мозжечок
- •Филогенез
- •Онтогенез
- •4.2.3. Перешеек
- •4.2.3.IVжелудочек
- •Тема 5. Средний мозг (4 часа)
- •5.1. Морфология среднего мозга
- •5.2. Филогенез
- •5.3. Онтогенез
- •Тема 6. Промежуточный мозг(4 часа)
- •6.1. Таламус
- •6.2. Гипоталамус
- •4.3. Метаталамус
- •6.4. Субталамус
- •6.5. Эпиталамус
- •6.5. Гипофиз
- •6.6. Циркумвентрикулярная система
- •6.7. Третий желудочек
- •6.8. Филогенез
- •6.9. Онтогенез
- •Тема 7. Конечный мозг(4 часа)
- •7.1. Плащ
- •7.1.1. Лобная доля
- •7.1.2. Теменная доля
- •7.1.3. Височная доля
- •7.1.4. Затылочная доля
- •7.1.5. Островок
- •7.1.6. Цитоархитектоника коры
- •7.2. Обонятельный мозг.
- •7.3. Подкорковые ядра
- •7.3.1. Чечевицеобразное ядро
- •7.3.2. Хвостатое ядро
- •7.3.3. Полосатое тело
- •7.3.4. Бледный шар
- •7.3.5. Миндалевидное ядро
- •7.3.6. Ограда
- •7.4. Белое вещество полушарий
- •7.5. Боковые желудочки
- •7.6. Корковые поля
- •7.7. Черепные нервы
- •7.7.1. Обонятельный нерв
- •7.7.2. Зрительный нерв
- •7.7.3. Глазодвигательный нерв
- •7.7.4. Блоковый нерв
- •7.7.5. Тройничный нерв
- •7.7.6. Отводящий нерв
- •7.7.7. Лицевой нерв
- •7.7.8. Преддверно-улитковый нерв
- •7.7.9. Языкоглоточный нерв
- •7.7.10. Блуждающий нерв
- •7.7.11. Добавочный нерв
- •7.7.12. Подъязычный нерв
- •7.8. Морфология головного мозга.
- •7.9. Оболочки головного мозга
- •7.9.1. Твердая мозговая оболочка
- •7.9.2. Паутинная оболочка мозга
- •7.9.3. Сосудистая оболочка мозга
- •7.10 Филогенез
- •7.11. Онтогенез
- •Тема 8. Основные структурно-функциональные системы мозга (4 часа)
- •8.1. Ретикулярная формация ствола головного мозга
- •8.2. Вегетативная нервная система
- •8.2.1. Симпатическая нервная система
- •8.2.2. Парасимпатическая нервная система
- •8.2.3. Отличия симпатической и парасимпатической систем
- •8.2.4. Вегетативная иннервация органов
- •8.2.5. Центральная регуляция
- •8.2.6. Морфология автономной нервной системы
- •8.2.7. Филогенез вегетативной нервной системы
- •8.2.8.Онтогенез автономной нервной системы
- •8.3. Лимбическая система
- •8.4. Зрительная сенсорная система.
- •8.4.1. Органы зрения
- •8.4.2. Глазное яблоко
- •8.4.3. Фиброзная оболочка
- •8.4.4. Сосудистая оболочка
- •8.4.5. Сетчатая оболочка
- •8.4.6. Камеры глаза
- •Хрусталик
- •Стекловидное тело
- •8.4.10. Слезный аппарат
- •Проводящие пути зрительного анализатора
- •Корковое представительство зрительной системы
- •Переработка сигналов кортикальными нейронами
- •Бинокулярное зрение
- •Полихромное зрение
- •Предметное и пространственное зрение
- •8.5. Обонятельная сенсорная система
- •8.5.1. Орган обоняния
- •8.5.2. Обонятельная луковица
- •8.5.3. Проводящие пути обонятельного анализатора
- •8.6. Слуховая сенсорная система
- •Орган слуха
- •8.6.1. Наружное ухо
- •8.6.2. Среднее ухо
- •8.6.3. Внутреннее ухо
- •8.6.4. Проводящий путь слухового анализатора
- •8.6.5. Центральное представительство слухового анализатора
- •8.7. Вестибулярная сенсорная система.
- •8.7.1. Перепончатый лабиринт
- •8.7.2. Рецепция в макулах
- •8.7.3. Рецепция в полукружных каналах
- •8.7.4. Проводящий путь вестибулярного аппарата
- •8.8. Кожно-кинестетическая сенсорная система.
- •8.8.1. Барорецепторы
- •8.8.2. Свободные нервные окончания
- •8.8.3. Нервные окончания вокруг волос
- •8.8.4. Диски Меркеля
- •8.8.5. Тельца Мейсснера
- •8.8.6. Тельца Пачини
- •8.8.7. Колбы Краузе
- •8.8.8. Тельца Руффини
- •8.8.9. Тельца Гольджи-Маццони
- •8.8.10. Сухожильные органы Гольджи
- •8.8.11. Мышечные веретена
- •8.8.12. Терморецепция
- •8.8.13. Ноцицепция
- •8.8.14. Центральная часть Кожно-кинестетической сенсорной системы
- •8.9. Вкусовая сенсорная система.
- •8.9.1. Орган вкуса
- •8.9.2. Проводящий путь вкусового анализатора
- •8.10. Анатомические основы глазодвигательной функции.
2.1.2. Постнатальный онтогенез
Постнатальный онтогенез нервной системы человека начинается с момента рождения ребенка. Головной мозг новорожденного весит 300-400г. Вскоре после рождения прекращается образование из нейробластов новых нейронов, сами нейроны не делятся. Однако к восьмому месяцу после рождения вес мозга удваивается, а к 4-5 годам утраивается. Масса мозга растет в основном за счет увеличения количества отростков и их миелинизации. Максимального веса мозг мужчин достигает к 20-29 годам, а женщин к 15-19. После 50 лет мозг уплощается, вес его падает и в старости может уменьшиться на 100 г.
2.2. Филогенез
Филогенез это процесс исторического развития вида. Филогенез нервной системы это история формирования и совершенствования ее структур.
В филогенетическом ряду существуют организмы различной степени сложности. Учитывая принципы их организации, их можно разделить на две большие группы. Беспозвоночные животные принадлежат разным типам и имеют различные принципы организации. Хордовые животные принадлежат к одному типу и имеют общий план строения от просто устроенного ланцетника до человека.
Несмотря на разный уровень сложности различных животных, перед их нервной системой стоят одни задачи. Это, во-первых, объединение всех органов и тканей в единое целое (регуляция висцеральных функций), и, во-вторых, обеспечение связи с внешней средой, а именно – восприятие ее стимулов и ответ на них (организация поведения и движения).
Клетки нервной системы, как беспозвоночных, так и хордовых животных устроены принципиально одинаково. С совершенствованием строения животного заметно изменяется структура нервной системы. Совершенствование нервной системы в филогенетическом ряду идет через концентрацию нервных элементов в узлах и появление длинных связей между ними. Следующим этапом является цефализация – появление головного мозга, который берет на себя функцию формирования поведения. Уже на уровне высших беспозвоночных (насекомые) появляются прототипы корковых структур (грибовидные тела), в которых тела клеток занимают поверхностное положение. У высших хордовых животных в головном мозге появляются настоящие корковые структуры, и развитие нервной системы идет по пути кортиколизации, т. е. передачи всех высших функций коре головного мозга.
Следует отметить, что с усложнением структуры нервной системы не наблюдается исчезновения предыдущих образований. В нервной системе высших организмов остаются и сетевидная и цепочная и ядерная структуры, характерные для предыдущих ступеней развития.
2.2.1. Нервная система беспозвоночных животных
Для беспозвоночных животных характерно наличие нескольких источников происхождения нервных клеток. У одного и того же типа животных нервные клетки могут одновременно и независимо происходить из трех разных зародышевых листков. Полигенез нервных клеток беспозвоночных является основой разнообразия медиаторных механизмов их нервной системы.
Нервная система впервые появляется у кишечнополостных животных. Кишечнополостные являются двухслойными животными. Их тело представляет собой полый мешок, внутренняя полость которого является пищеварительной полостью. Нервная система кишечнополостных принадлежит к диффузному типу. В ней каждая нервная клетка длинными отростками соединена с несколькими соседними, при этом образуется нервная сеть. Нервные клетки кишечнополостных не имеют специализированных поляризованных отростков. Их отростки проводят возбуждение в любую сторону и не образуют длинных проводящих путей. Среди контактов между нервными клетками диффузной нервной системы присутствует несколько типов. Существуют плазматические контакты, обеспечивающие непрерывность сети (анастомозы). Появляются и щелевидные контакты между отростками нервных клеток, подобные синапсам. Причем среди них существуют контакты, в которых синаптические пузырьки располагаются по обе стороны контакта – так называемые симметричные синапсы, а есть и несимметричные синапсы: в них везикулы располагаются только с одной стороны щели.
Нервные клетки типичного кишечнополостного животного гидры равномерно распределены по поверхности тела, образуя некоторые скопления в районе ротового отверстия и подошвы. Диффузная нервная сеть проводит возбуждение во всех направлениях. При этом волну распространяющегося возбуждения сопровождает волна мышечного сокращения.
Следующим этапом развития беспозвоночных является появление трехслойных животных – плоских червей. Подобно кишечнополостным они имеют кишечную полость, сообщающуюся с внешней средой ротовым отверстием. Однако у них появляется третий зародышевый слой – мезодерма и двусторонний тип симметрии. Нервная система низших плоских червей принадлежит диффузному типу. Однако из диффузной сети уже обособляются несколько нервных стволов.
У свободно живущих плоских червей нервный аппарат приобретает черты централизации. Нервные элементы собираются в несколько продольных стволов (для самых высокоорганизованных животных характерно наличие двух стволов), которые соединяются между собой поперечными волокнами (комиссурами). Упорядоченная таким образом нервная система называется ортогоном. Стволы ортогона представляют собой совокупность нервных клеток и их отростков.
Наряду с двухсторонней симметрией у плоских червей оформляется передний конец тела, на котором концентрируются органы чувств (статоцист, «глазки», обонятельные ямки, щупальца). Вслед за этим на переднем конце тела появляется скопление нервной ткани, из которой формируется мозговой или церебральный ганглий. У клеток церебрального ганглия появляются длинные отростки, идущие в продольные стволы ортогона.
Таким образом, ортогон представляет собой первый шаг к централизации нервного аппарата и его цефализации (появлению мозга). Централизация и цефализация являются результатом развития сенсорных (чувствительных) структур.
Следующим этапом развития беспозвоночных животных является появление сегментированных животных – кольчатых червей. Их тело метамерно, т.е. состоит из сегментов. Структурной основой нервной системы кольчатых червей является ганглий – парное скопление нервных клеток, расположенных по одному в каждом сегменте. Нервные клетки в ганглии размещаются по периферии. Центральную часть ганглия занимает нейропиль - переплетение отростков нервных клеток и глиальные клетки. Ганглий расположен на брюшной стороне сегмента под кишечной трубкой. Каждый ганглий посылает свои чувствительные и двигательные волокна в свой сегмент и в два соседних. Таким образом, каждый ганглий имеет три пары боковых нервов, каждый из которых является смешанным и иннервирует свой сегмент. Приходящие с периферии чувствительные волокна попадают в ганглий через вентральные корешки нервов. Двигательные волокна выходят из ганглия по дорсальным корешкам нервов. Соответственно этому, чувствительные нейроны расположены в вентральной части ганглия, а двигательные – в дорсальной. Кроме того, в ганглии существуют мелкие клетки, иннервирующие внутренние органы (вегетативные элементы), они расположены латерально – между чувствительными и двигательными нейронами.
Среди нейронов чувствительной, двигательной или ассоциативной зон ганглиев кольчатых червей не обнаружено группирования элементов, нейроны распределены диффузно, т.е. не образуют центров.
Ганглии кольчатых червей соединены между собой в цепочку. Каждый последующий ганглий связан с предыдущим при помощи нервных стволов, которые называются коннективами. На переднем конце тела кольчатых червей два слившихся ганглия образуют крупный подглоточный нервный узел. Коннективы от подглоточного нервного узла, огибая глотку, вливаются в надглоточный нервный узел, который является самой ростральной (передней) частью нервной системы. В состав надглоточного нервного ганглия входят только чувствительные и ассоциативные нейроны. Двигательных элементов там не обнаружено. Таким образом, надглоточный ганглий кольчатых червей является высшим ассоциативным центром, он осуществляет контроль над подглоточным ганглием. Подглоточный ганглий контролирует нижележащие узлы, он имеет связи с двумя – тремя последующими ганглиями, тогда как остальные ганглии брюшной нервной цепочки не образуют связей длинней, чем до соседнего ганглия.
В филогенетическом ряду кольчатых червей есть группы с хорошо развитыми органами чувств (многощетинковые черви). У этих животных в надглоточном ганглии обособляются три отдела. Передний отдел иннервирует щупальца, средняя часть иннервирует глаза и антенны. И, наконец, задняя часть развивается в связи с совершенствованием химических органов чувств.
Сходную структуру имеет нервная система членистоногих, т.е. она построена по типу брюшной нервной цепочки, однако, может достигать высокого уровня развития. Она включает в себя значительно развитый надглоточный ганглий, выполняющий функцию мозга, подглоточный ганглий, управляющий органами ротового аппарата, и сегментарные ганглии брюшной нервной цепочки. Ганглии брюшной нервной цепочки могут сливаться между собой, образуя сложные ганглиозные массы.
Головной мозг членистоногих состоит из трех отделов: переднего – протоцеребрума, среднего – дейтоцеребрума и заднего – тритоцеребрума. Сложным строением отличается мозг насекомых. Особенно важными ассоциативными центрами насекомых являются грибовидные тела, располагающиеся на поверхности протоцеребрума, причем, чем более сложным поведением характеризуется вид, тем более развиты у него грибовидные тела. Поэтому наибольшего развития грибовидные тела достигают у общественных насекомых.
Практически во всех отделах нервной системы членистоногих существуют нейросекреторные клетки. Нейросекреты играют важную регулирующую роль в гормональных процессах членистоногих.
В процессе эволюции первоначально диффузно расположенные биполярные нейросекреторные клетки воспринимали сигналы либо отростками, либо всей поверхностью клетки, затем происходило формирование нейросекреторных центров, нейросекреторных трактов и нейросекреторных контактных областей. В последующем наблюдается специализация нервных центров, увеличивается степень надежности во взаимоотношениях двух основных регуляторных систем (нервной и гуморальной) и формируется принципиально новый этап регуляции – подчинение нейросекреторным центрам периферических эндокринных желез.
Нервная система моллюсков также имеет ганглионарное строение. У простейших представителей типа она состоит из нескольких пар ганглиев. Каждая пара ганглиев управляет определенной группой органов: ногой, висцеральными органами, легкими и т.д. и расположена рядом с иннервируемыми органами или внутри них. Одноименные ганглии попарно соединены между собой комиссурами. Кроме того, каждый ганглий связан длинными коннективами с церебральным комплексом ганглиев.
У более высокоорганизованных моллюсков (головоногие) нервная система преобразуется. Ганглии ее сливаются и образуют общую окологлоточную массу – головной мозг. От заднего отдела головного мозга отходят два крупных мантийных нерва и образуют два больших звездчатых ганглия. Таким образом, у головоногих наблюдается высокая степень цефализации.