
- •1.Предмет и задачи метрологии.
- •2. Основные представления теоретической метрологии: физические свойства и величины. Классификация физических величин.
- •3. Системы фв и их единиц. Понятия: «р-р фв», «значение фв», «единица фв», «р-рность фв».
- •4. Системы фв и их единиц. Уравнения связи между числовыми значениями фв. Основные и производные фв.
- •5. Принципы построения систем единиц фв.
- •6. Международная система единиц (си). Основные и дополнительные единицы системы си.
- •7. Воспроизведение единиц фв и передача их р-ров. Понятие о единстве измерений.
- •8. Воспроизведение единиц фв и передача их р-ров. Эталоны единиц фв.
- •9.Понятие о единице величины и измерении. Основное уравнение измерения.
- •10. Классификация измерений.
- •11. Шкалы измерений.
- •12. Измерение и его основные операции. Структурная схема измерения.
- •13. Основные элементы процесса измерений.
- •14. Си. Классификация си.
- •15. Принципы построения си. Методы измерений.
- •16. Основные этапы измерений.
- •17. Постулаты теории измерений.
- •18. Качество измерений. Основные определения.
- •19. Теория погрешностей измерений.
- •20. Метрологические характеристики си.
- •21. Классы точности си.
- •23. Выбор си. Основные принципы выбора си.
- •24. Измерительные системы. Основные определения. Классификация измерительных систем.
- •26. Основные понятия теории метрологической надежности. Метрологическая надежность и межповерочные интервалы.
- •28. Методики выполнения измерений. Общие требования к разработке, оформлению, аттестации.
- •29. Воспроизведение единиц фв и передача их размеров. Поверочные схемы.
- •30. Воспроизведение единиц фв и передача их размеров. Поверка си. Виды поверок.
- •31.Калибровка си. Российская система калибровки.
- •32. Понятие об испытании и контроле. Основные принципы государственной системы испытаний.
- •33. Метрологическая аттестация си и испытательного оборудования.
- •34. Испытания с целью утверждения типа средств измерений. Технология проведения испытаний.
- •35. Метрологическая экспертиза. Анализ состояния средств измерения
- •36. Система сертификации си. Основные положения и порядок проведения работ в рамках системы сертификации си.
- •37. Правовые основы метрологической деятельности в рф. Основные положения закона рф «Об обеспечении единства измерений»
- •38. Государственная метрологическая служба в рф. Организационные основы государственной метрологической службы.
- •39. Государственная метрологическая служба в рф. Государственный метрологический контроль.
- •41. Международные организации по метрологии. Международная организация мер и весов
- •42. Международные организации по метрологии. Международная организация законодательной метрологии
- •43. Основные международные нормативные документы по метрологии.
- •44. Метрология в условиях глобализации мировой экономики и торговли.
19. Теория погрешностей измерений.
Погрешность измерения Δхизм — это отклонение результата измерения х от истинного (действительного) хи(хд) значения измеряемой величины: Δ хизм = х - хд
В зависимости от формы выражения различают абсолютную, относительную и приведенную погрешности измерения.
Абсолютная погрешность определяется как разность Δ= |х - хд|, а
относительная – как отношение δ= Δ /x = ±Δ / хд *100%.
Приведенная погрешность γ = ± Δ / хN *100% , где хN - нормированное значение величины. Например, хN = хmах, где хmах — максимальное значение измеряемой величины.
В
качестве истинного значения при
многократных измерениях параметра
выступает среднее арифметическое
значение
- Для оценки ее возможных отклонений от
хи
определяют опытное среднеквадратическое
отклонение
(CKO) .
Закон теории погрешностей. Если необходимо повысить точность результата (при исключенной систематической погрешности) в 2 раза, то число измерений нужно увеличить в 4 раза; если требуется увеличить точность в 3 раза, то число измерений увеличивают в 9 раз и т.д.
Систематическая Δс составляющая остается постоянной или закономерно изменяется при повторных измерениях одного и того же параметра. Случайная Δ (с точкой наверху) составляющая изменяется при повторных измерениях одного и того же параметра случайным образом.
Грубые погрешности (промахи) возникают из-за ошибочных действий оператора, неисправности СИ или резких изменений условий измерений. Как правило, грубые погрешности выявляются в результате обработки результатов измерений с помощью специальных критериев.
Случайная
и систематическая составляющие
погрешности измерения проявляются
одновременно, так что общая погрешность
при их независимости Δ = Δс
+ Δ (с точкой наверху) или через СКО
.
Значение случайной погрешности заранее неизвестно, оно возникает из-за множества неуточненных факторов. Случайные погрешности нельзя исключить полностью, но их влияние может быть уменьшено путем обработки результатов измерений. Для этого должны быть известны вероятностные и
статистические характеристики (закон распределения, закон математического ожидания, СКО, доверительная вероятность и доверительный интервал).
В зависимости от источников ее возникновения различают методическую, инструментальную и субъективную составляющие погрешности.
Субъективные систематические погрешности связаны с индивидуальными особенностями оператора. Эта погрешность возникает из-за ошибок в отсчете показаний и неопытности оператора. В основном же систематические погрешности возникают из-за методической и инструментальной составляющих.
Методическая составляющая погрешности обусловлена несовершенством метода измерения, приемами использования СИ, некорректностью расчетных формул и округления результатов.
Инструментальная составляющая возникает из-за собственной погрешности СИ, определяемой классом точности, влиянием СИ на результат и ограниченной разрешающей способности СИ.
20. Метрологические характеристики си.
При использовании СИ принципиально важно знать степень соответствия информации о измеряемой величине, содержащейся в выходном сигнале, ее истинному значению. С этой целью для каждого СИ вводятся и нормируются определенные метрологические характеристики (MX). Метрологические характеристики — это характеристики свойств СИ, оказывающие влияние на результат измерения и его погрешности. Характеристики, устанавливаемые нормативно-техническими документами, называются нормируемыми, а определяемые экспериментально — действительными.
МХ СИ позволяют:
• определять результаты измерений и рассчитывать оценки характеристик инструментальной составляющей погрешности измерения в реальных условиях применения СИ;
• рассчитывать MX каналов измерительных систем, состоящих из ряда средств измерений с известными MX;
• производить оптимальный выбор СИ, обеспечивающих требуемое качество измерений при известных условиях их применения;
• сравнивать СИ различных типов с учетом условий применения.
Классификация МХ СИ:
1.МХ для определения результатов измерения
функция преобразования
значения меры
цена деления
кодовые характеристики
2.МХ погрешностей СИ. Эта группа характеристик описывает погрешности, обусловленные собственными свойствами СИ в нормальных условиях эксплуатации. Суммарное их значение образует основную погрешность СИ.
систематическая составляющая
случайная составляющая
вариация выходного сигнала СИ
погрешность СИ
функция распределения погрешнотей
3.МХ чувствительности СИ к влияющим факторам. Описывают влияние, оказываемое внешними факторами.
функция влияния
изменение МХ при имзменении влияющих величин
4.Динамические характеристики СИ
1) полные
переходная
импульсная переходная
амплитудно-фазовая
амплитудно-частотная
амплитудно- и фазочастотные
передаточная функция
2)неполные
время реакции
постоянная времени
максимальная частота
5.Неиформативные параметры выходного сигнала. Являются одним из видов влияющих величин и определяют допустимую область значений тех параметров выходного сигнала, которые не содержат непосредственной информации о значении измеряемой величины. Однако они определяют возможность нормальной работы СИ.