Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Diss / 6 - 753p.pdf
Скачиваний:
48
Добавлен:
27.03.2016
Размер:
15.34 Mб
Скачать

Large Gap Asymptotics for Random Matrices

Igor Krasovsky

Abstract Asymptotic behavior is discussed of the sine-kernel and Airy-kernel Fredholm determinants related to random matrices.

Let Ks(j ), j = 1, 2 be the trace-class operators with kernels

 

 

K(1)(x, y)

=

sin(x y)

,

K(2)(x, y)

=

Ai(x)Ai (y) Ai(y)Ai (x)

(1)

 

s

π(x

y)

s

x

y

 

 

 

 

 

 

 

 

 

 

 

acting on L2(0, 2s) and L2(s, ), respectively. We are interested in the behaviour of the following Fredholm determinants, the so called sine-kernel and Airy-kernel determinants,

Ps(j ) = det(I Ks(j )), j = 1, 2,

(2)

as s → +∞. In the Gaussian Unitary Ensemble of random matrices [11], Ps(1) is the probability, in the bulk scaling limit, that there are no eigenvalues in the interval (0, 2s); while Ps(2) is the probability, in the edge scaling limit, that there are no eigenvalues in the interval (s, +∞) (Ps(2) is the distribution of the largest eigenvalue). The asymptotics of Ps(j ) as s → +∞ are often referred to as the large gap asymptotics.

We will describe the main steps of the method of computing the asymptotics of Ps(j ) used in [4, 5, 10]. However, we leave out all the Riemann-Hilbert analysis and just state its results when needed. The details are given in the 3 mentioned publications.

First, we discuss the case of the sine-kernel. In [7], Dyson found that

Igor Krasovsky

Department of Mathematical Sciences, Brunel University West London, Uxbridge UB83PH, UK,

e-mail: Igor.Krasovsky@brunel.ac.uk

V. Sidoraviciusˇ (ed.), New Trends in Mathematical Physics,

413

© Springer Science + Business Media B.V. 2009

 

414

 

 

 

 

 

 

 

 

 

 

 

Igor Krasovsky

ln Ps(1) = −

s2

1

ln s + c0 +

a1

+

a2

+ · · · ,

s → +∞,

(3)

2

 

4

s

s2

where

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

c0 =

ln 2

+ 3ζ (1).

 

(4)

 

 

 

 

 

 

 

 

 

 

12

 

Here ζ (z) is the Riemann zeta-function. The constants a1, a2, were also identified in [7]. The first 2 leading terms in the expansion (3) were found earlier by des Cloizeaux and Mehta [6]. The results in [6] and [7] were not fully rigorous.

The fact that the first leading term in (3) is correct was proved in [14] by Widom. The full asymptotic expansion of (d/ds) ln Ps was obtained rigorously by Deift, Its, and Zhou in [3]. This result proves (3) up to the expression for c0. The final step, a proof that c0 is given by (4), was carried out recently and in 3 variants: by Ehrhardt [8], by the author [10], and by Deift, Its, Zhou, and the author in [4]. The methods of [10] and [4] are closely related and we will now describe a “hybrid” approach based on these 2 papers.

For a function f (θ ) integrable over the unit circle, the Toeplitz determinant with symbol f is given by the expression:

 

 

 

 

 

 

 

2π

ei(j k)θ f (θ )dθ

n

1

 

(5)

 

Dn(f ) = det 2π 0

 

.

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j,k=0

 

A Toeplitz determinant has the following two useful representations:

 

 

1

 

2π

· · · 0

2π

 

 

 

 

n

 

 

Dn(f ) =

 

 

0

 

 

|ej ek |2 f (θj )dθj ,

(6)

(2π )nn

 

 

 

 

!

 

 

 

1

 

j

=

1

 

 

 

 

 

 

j <k

n

 

 

 

and

 

 

 

 

 

 

 

n1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dn(f ) = χk2,

 

 

 

 

(7)

 

 

 

 

 

 

 

 

j =0

 

 

 

 

 

 

where χk are the leading coefficients of the polynomials φk (z) = χk zk

+ · · · ,

k = 0, 1, . . . orthogonal with weight f (θ ) on the unit circle. If f (θ ) is real and nonnegative,

1

0

2π

 

 

 

 

 

 

φk (em(e)f (θ )dθ = δkm, k, m = 0, 1, . . . .

(8)

2π

To obtain the asymptotics of the Fredholm determinants, we represent them as double-scaling limits of Toeplitz (for the sine-kernel case) and Hankel (for the Airykernel case, see below) determinants. Let

f (θ )

fα (θ )

=

1,

α < θ < 2π α

(9)

 

 

0,

otherwise.

 

Large Gap Asymptotics for Random Matrices

415

Now observe that

Ps(1) = nlim Dn(f2s/n).

(10)

→∞

 

This fact is actually used in random matrix theory to obtain the sine-kernel determinant; it was also used by Dyson in [7]. Note that if we could find the asymptotics of the polynomials orthogonal with weight (9), and in particular, the asymptotics of χk , k → ∞, we would obtain by (10) and (7) part of (3) but not the constant c0, as the product of the first χ0χ1 · · · χk0 would remain undetermined. However, this difficulty can be resolved. We start with the following identity, which can be obtained from (7):

 

d

n

|φn(e, α)|2

1

φn(e, α)eφn(e, α) + c.c. ,

 

 

ln Dn(fα ) =

 

 

 

π

π

 

n = 1, 2, . . .

 

 

 

 

(11)

where φk (z, α) are the polynomials orthogonal w.r.t. fα given by (9), and φk (z, α) are their derivatives w.r.t. the variable z. To use this identity, we now need to find the asymptotics of the polynomials appearing in the r.h.s. We do this by solving the Riemann-Hilbert problem associated with these polynomials using a steepest descent approach of Deift and Zhou [2]. (Riemann-Hilbert formulation for orthogonal polynomials was first observed in the case of orthogonality on the real line by Fokas, Its, and Kitaev in [9].) This step of the analysis is technically the most involved one. If we substitute the results in the r.h.s. of (11), we obtain

 

d

n2

 

α

 

1

α

1

 

 

 

 

ln Dn(fα ) = −

 

tan

 

8 cot

 

 

+ O

 

(12)

2

2

2

n sin2(α/2)

for all n > s0 with some fixed s0. A crucial fact is that this expansion holds and the

error term is uniform for

2s0

α < π . We will now integrate this identity.

 

 

n

 

First, we can obtain an expression for Dn(fα ) as α π from below. Changing

the variables θj

= π + α)xj

in (6) and expanding the integrand in π α, we

obtain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

2π

α

 

 

 

2π

 

α

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

Dn(fα ) =

 

 

 

α

 

 

 

· · · α

 

 

 

 

|ej ek |2 j

 

 

(2π )nn

!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j <k

n

 

 

 

 

 

j

=

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

=

 

α)n2

A

n

(1

+

O

n

((π

α)2)),

 

 

 

 

 

 

 

 

 

 

(13)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2π )n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as α π from below and n is fixed. Here

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

2

n1

 

k

3

 

 

 

An =

 

 

 

 

1 · · ·

 

 

 

 

 

 

 

(xj xk )2

dxj

= 2n

 

 

 

!

 

(14)

n

 

 

1

 

 

(n

k)

 

 

!

 

 

 

j <k

n

 

 

 

 

 

j

=

1

 

 

 

k

=

0

 

+ !

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is a Selberg integral. Using its asymptotics as n → ∞, we obtain from (13)

416

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Igor Krasovsky

ln D

(f

)

=

n2 ln

π α

1

ln n

+

c

0 +

δ

n +

O

((π

α)2), α

π, (15)

 

4

n

α

 

2

 

 

 

n

 

 

 

where c0 is given by (4) and δn 0 as n → ∞ (δn depends only on n).

Now we can integrate the identity (12) from α close to π to α 2s0/n and use (15) at the lower integration limit. We thus obtain the following general formula:

 

ln Dn(α) = n2 ln cos

2

4 ln n sin

2

+ c0

+ O n sin(α/2)

+ δn, (16)

 

 

 

α

 

1

 

α

 

1

 

 

 

2s0

 

 

 

 

 

 

 

 

 

 

 

 

for

, where s0 is a (large) positive constant.

 

n α < π , n > s0

 

 

Note that for a fixed α, as n → ∞ (16) reproduces a result of Widom [13] for

the asymptotics of a determinant on a fixed arc of the unit circle, which was used by Dyson to conjecture the value of c0 (4).

Setting α = 2s/n, s > s0 in (16), and letting n → ∞, we obtain by (10)

 

 

s2

 

1

1

,

 

Ps(1) = nlim Dn(f2s/n) = −

 

4 ln s + c0

+ O

 

(17)

2

s

→∞

 

 

 

 

 

 

 

with c0 given by (4). This, in particular, completes the proof for the constant term c0 in (3). Note that the present approach can be used to compute further terms in the asymptotic expansion.

We now turn our attention to the Airy-kernel determinant, Ps(2), known as the Tracy-Widom distribution. In [12], Tracy and Widom found a connection of Ps(2) with the Hastings-McLeod solution of the Painlevé II equation, and also observed that

 

s3

 

1

b3

b6

 

 

 

ln det(I Ks ) = −

 

 

 

ln s + χ + s3

+

 

+ · · · ,

as s → +∞,

(18)

12

8

s6

where the values of b3, b6, . . . are extracted from the asymptotics of the Hastings-

McLeod solution, and

1

 

 

χ =

+ ζ (1).

 

24 ln 2

(19)

This value of χ was conjectured in [12] based on numerical evidence and by taking into account a similar expression for the constant c0 in (4). A proof was given by Deift, Its, and the author in [5], and another proof by Baik, Buckingham, and DiFranco appeared in [1]. Here we discuss the approach used in [5], stressing its similarities to the method in the case of the sine-kernel described above.

For a function w(x) integrable over the real half-line (0, ), consider the Hankel determinant with symbol w:

DnH (w) = det 0

xj +k w(x)dx

n1

(20)

.

 

 

j,k=0

 

Large Gap Asymptotics for Random Matrices

417

Just as in the case of a Toeplitz determinant, the Hankel determinant DnH has the following two useful representations:

 

 

1

 

· · · 0

 

 

 

 

n

 

 

H

 

 

 

 

 

 

 

 

 

Dn

(w) =

 

 

 

0

 

 

 

(xj xk )2

w(xj )dxj ,

(21)

n

!

 

 

 

 

 

 

1

j <k

j

=

1

 

 

 

 

 

 

 

n

 

 

and

 

 

 

 

 

 

 

 

n1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DnH (w) = κk2,

 

 

 

(22)

 

 

 

 

 

 

 

 

 

j =0

 

 

 

 

where κk are the leading coefficients of the polynomials pk (x) = κk xk + · · · , k = 0, 1, . . . orthogonal with weight w(x) on the real half-line. If w(x) is real and nonnegative,

0

pk (x)pm(x)w(x)dx = δkm,

k, m = 0, 1, . . . .

(23)

Let

 

 

 

 

e4xn,

 

 

 

w(x)

wα (x)

=

0 < x < α

(24)

 

 

 

0,

otherwise.

 

With so defined wα (x), the following analogue of (10) holds:

(2)

= nlim

DnH (w1s/(2n)2/3 )

(25)

Ps

DH

(w

)

.

 

→∞

n

 

 

 

 

Using (22) we can obtain the following differential identity:

d

ln DH (w

 

)

=

κn1(α)

e4(p

(α, α)p

n1

(α, α)

p

 

(α, α)p

(α, α)),

 

 

 

 

n

α

 

κn(α)

n

 

 

 

n

n1

 

(26) where pk (x, α) = κk (α)xk + · · · are the polynomials orthogonal on (0, α) with weight wα (x), and the prime denotes differentiation w.r.t. the argument x.

A Riemann-Hilbert analysis of the polynomials pk (x, α) as k → ∞ produces the asymptotic expression for the r.h.s. of (26), and we have

 

d

n2

 

α

 

1

 

1

. (27)

 

 

ln DnH (wα ) =

 

(1 α)2 +

 

+

 

O

 

 

α

4(1 α2)

1 α

n|1 α|3/2

This expansion holds uniformly in α (0, 1 s0/(2n)2/3] for all n > s03/2/2, where s0 is some (large) fixed number.

To proceed as in the case of the sine-kernel, we estimate first DnH (wα ) for α 0, where a series expansion can be written. This is done by an analysis of (21), and we obtain (cf. the derivation of (13)):

418

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Igor Krasovsky

 

 

1

 

0

α

· · · 0

α

 

 

 

 

n1

DnH (wα ) =

 

 

 

 

 

 

 

 

 

(xi xj )2 e4xj ndxj

 

 

n

 

 

 

 

 

 

 

 

 

 

!

 

 

 

 

0

≤ −

 

 

j

=

0

 

 

 

 

 

 

 

 

 

 

 

i<j n 1

 

 

 

 

=

 

 

 

2

 

n2

An(1 + On(α)),

 

 

 

 

(28)

 

 

 

 

 

 

 

α

 

 

 

 

 

 

 

 

 

 

 

 

as α 0 from

above and n is fixed. The quantity A

n

is a Selberg integral given

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by (14). Note that Dn

(w) is another Selberg integral:

 

 

 

H

 

1

 

 

 

 

 

 

 

 

 

n1

Dn (w) =

 

 

 

 

 

0

 

 

· · · 0

 

 

(xi xj )2 e4xj ndxj

 

n

!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n1

 

0i<j n1

 

 

j =0

 

=

(4n)n

2

 

 

 

 

 

 

 

(29)

 

 

k!2.

 

 

 

 

 

 

k=0

(Both An and DnH (w) can also be computed using the formula (22) for the Legendre and Laguerre orthogonal polynomials, respectively.)

Using the asymptotics of An and DnH (w) for n → ∞, we conclude that (cf. (15))

 

DnH (wα )

 

3

 

ln α n2

 

1

 

 

 

n

+

ζ ( 1)

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

ln

 

 

 

 

 

 

 

ln

 

 

 

 

δn

On(α),

 

α

0, (30)

DH (w

)

2

 

12

2

 

 

 

 

n

 

= +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

where δn depends on n only, and δn 0 as n → ∞.

 

 

 

 

 

 

 

 

0

 

 

2/3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α

1

/(2n)

 

Now we can integrate the identity (27) from α close to 0 to

 

 

s

 

and use (30) at the

lower integration limit. We obtain for any 0

< α

 

1

 

 

3/2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s0/(2n)2/3, and any n > s

0

 

 

 

/2 (cf. (16)):

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DnH (wα )

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α2

1

 

 

 

 

1

 

 

 

 

 

 

 

 

 

ln

 

= n2

 

+ ln α 2α +

 

 

 

 

 

ln n

 

 

ln(1 α2)

 

 

 

DnH (w)

2

 

 

2

12

8

(31)

 

 

 

 

 

 

 

 

 

 

12 ln 2

 

 

ζ (

 

1)

 

 

O n(1

 

1α)3/2

 

 

δn.

 

 

 

 

 

 

 

 

 

 

+

 

1

 

 

 

 

+

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set here α = 1 s/(2n)2/3, s > s0, and let n → ∞. By (25) we obtain

 

 

 

 

 

 

 

 

 

 

(2)

= nlim

 

 

DnH (w1s/(2n)2/3 )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ps

 

 

 

 

 

 

DH

(w

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

→∞

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= −

s3

 

 

 

1

 

 

 

 

 

 

1

 

ln 2 + ζ (1) + O(s

3/2),

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ln s +

 

 

 

 

 

 

(32)

 

 

 

 

 

 

12

8

24

 

 

 

 

which gives the first 3 terms of (18). Further terms can be obtained in this way as well.

Let us again stress that our approach [10, 4, 5] to compute the asymptotics for the above Fredholm determinants is based on approximating them with Toeplitz

Соседние файлы в папке Diss