Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Diss / 6 - 753p.pdf
Скачиваний:
48
Добавлен:
27.03.2016
Размер:
15.34 Mб
Скачать

Black Hole Entropy Function and Duality

 

 

133

with

1

 

 

Y I =

φI + ipI

(30)

 

2

and the φI satisfying the attractor equations qI = ∂FE /∂φI .

4 Duality Invariant OSV Integral

The quantity Σ given above can be used to define a duality invariant version of the OSV integral for supersymmetric black holes. The OSV conjecture expresses microscopic state degeneracies d(q, p) in terms of macroscopic data [16],

d(p, q) dφeπ [FE(p,φ)qI φI ], (31)

where FE(p, φ) was defined in (29). Electric/magnetic duality is, however, not manifest in (31). A duality invariant version of the OSV integral can be constructed using (23), with Υ set to its attractor value Υ = −64. It reads [4]

d(p, q)

 

dY d ¯

¯

(Y,Y ,p,q)

,

(32)

 

Y Δ(Y, Y )eπ Σ ¯

where = |det ImFKL| (non-holomorphic corrections to the coupling functions

can also be incorporated into (32)). Integrating (32) over fluctuations I ¯ I in

δ(Y Y )

saddle-point approximation results in [4]

d(p, q) dφ Δ(p, φ)eπ [FE(p,φ)qI φI ], (33)

which is a modified versionof the OSV integral (31), containing a non-trivial integration measure factor which is necessary for consistency with electric/magnetic duality. Evaluating (33) further in saddle-point approximation precisely yields the macroscopic entropy (27). The presence of the measure factor in (33) has been confirmed in the recent works [19, 7].

References

1.K. Behrndt, et al., Nucl. Phys. B 488, 236–260 (1997). hep-th/9610105

2.G.L. Cardoso, B. de Wit, and T. Mohaupt, Phys. Lett. B 451, 309 (1999). hep-th/ 9812082

3.G.L. Cardoso, B. de Wit, J. Käppeli, and T. Mohaupt, J. High Energy Phys. 12, 019 (2000). hep-th/0009234

4.G.L. Cardoso, B. de Wit, J. Käppeli, and T. Mohaupt, J. High Energy Phys. 03, 074 (2006). hep-th/0601108

5.G.L. Cardoso, B. de Wit, and S. Mahapatra, hep-th/0612225

134

Gabriel Lopes Cardoso

6.B. de Wit, Nucl. Phys. Proc. Suppl. 101, 154 (2001). hep-th/0103086

7.F. Denef and G. Moore, hep-th/0702146

8.S. Ferrara and R. Kallosh, Phys. Rev. D 54, 1525–1534 (1996). hep-th/9603090

9.S. Ferrara and R. Kallosh, Phys. Rev. D 54, 1514 (1996). hep-th/9602136

10.S. Ferrara, R. Kallosh, and A. Strominger, Phys. Rev. D 52, 5412 (1995). hep-th/ 9508072

11.S. Ferrara, G.W. Gibbons, and R. Kallosh, Nucl. Phys. B 500, 75–93 (1997). hepth/9702103

12.G.W. Gibbons, In: Olive, D.I., West, P.C. (eds.) Duality and Supersymmetric Theories, p. 267. Cambridge (1997)

13.K. Goldstein, N. Iizuka, R.P. Jena, and S.P. Trivedi, Phys. Rev. D 72, 124021 (2005). hep-th/0507096

14.V. Iyer and R.M. Wald, Phys. Rev. D 50, 846 (1994). gr-qc/9403028

15.T. Jacobson, G. Kang, and R.C. Myers, Phys. Rev. D 49, 6587 (1994). gr-qc/ 9312023

16.H. Ooguri, A. Strominger, and C. Vafa, Phys. Rev. D 70, 106007 (2004). hep-th/ 0405146

17.B. Sahoo and A. Sen, J. High Energy Phys. 09, 029 (2006). hep-th/0603149

18.A. Sen, J. High Energy Phys. 0509, 038 (2005). hep-th/0506177

19.D. Shih and X. Yin, J. High Energy Phys. 0604, 034 (2006). hep-th/0508174

20.A. Strominger, Phys. Lett. B 383, 39 (1996). hep-th/9602111

21.A. Strominger and C. Vafa, Phys. Lett. B 379, 99 (1996). hep-th/9601029

22.R.M. Wald, Phys. Rev. D 48, 3427 (1993). gr-qc/9307038

Соседние файлы в папке Diss