Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Diss / 6 - 753p.pdf
Скачиваний:
48
Добавлен:
27.03.2016
Размер:
15.34 Mб
Скачать

Contents

Entropy of Eigenfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

Nalini Anantharaman, Herbert Koch and Stéphane Nonnenmacher

 

1

Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2

Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

3

Outline of the Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

 

3.1

Definition of the Metric Entropy . . . . . . . . . . . . . . . . . . . . .

7

 

3.2

From Classical to Quantum Dynamical Entropy . . . . . . . .

9

 

3.3

Entropic Uncertainty Principle . . . . . . . . . . . . . . . . . . . . . . .

13

 

3.4

Applying the Entropic Uncertainty Principle to the

 

 

 

Laplacian Eigenstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

Stability of Doubly Warped Product Spacetimes . . . . . . . . . . . . . . . . . . . . .

23

Lars Andersson

 

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

2

Warped Product Spacetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

 

2.1

Asymptotic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

3

Fuchsian Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

 

3.1

Velocity Dominated Equations . . . . . . . . . . . . . . . . . . . . . . .

28

 

3.2

Velocity Dominated Solution . . . . . . . . . . . . . . . . . . . . . . . .

29

4

Stability

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

Rigorous Construction of Luttinger Liquids Through Ward Identities . . .

33

Giuseppe Benfatto

 

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33

2

The Tomonaga Model with Infrared Cutoff . . . . . . . . . . . . . . . . . . . .

34

3

The RG Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35

4

The Dyson Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37

5

The First Ward Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39

6

The Second Ward Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40

xxvii

xxviii

 

Contents

7

The Euclidean Thirring Model . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 41

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 43

New Algebraic Aspects of Perturbative and Non-perturbative Quantum

Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Christoph Bergbauer and Dirk Kreimer

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2 Lie and Hopf Algebras of Feynman Graphs . . . . . . . . . . . . . . . . . . . 46 3 From Hochschild Cohomology to Physics . . . . . . . . . . . . . . . . . . . . . 50 4 Dyson-Schwinger Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5 Feynman Integrals and Periods of Mixed (Tate) Hodge

Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Exact Solution of the Six-Vertex Model with Domain Wall Boundary

Conditions

. . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

59

Pavel M. Bleher

 

 

1

Six-Vertex Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

59

2

Phase Diagram of the Six-Vertex Model . . . . . . . . . . . . . . . . . . . . . .

62

3

Izergin-Korepin Determinantal Formula . . . . . . . . . . . . . . . . . . . . . .

63

4

The Six-Vertex Model with DWBC and a Random Matrix

 

 

Model . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

63

5

Asymptotic Formula for the Recurrence Coefficients . . . . . . . . . . . .

65

6

Previous Exact Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

67

7

Zinn-Justin’s Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

70

8

Large N Asymptotics of ZN in the Ferroelectric Phase . . . . . . . . . .

71

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

71

Mathematical Issues in Loop Quantum Cosmology . . . . . . . . . . . . . . . . . . .

73

Martin Bojowald

 

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

73

2

Quantum Representation and Dynamical Equations . . . . . . . . . . . . .

75

 

2.1

Quantum Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

75

 

2.2

Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

76

3

Quantum Singularity Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

78

4

Examples for Properties of Solutions . . . . . . . . . . . . . . . . . . . . . . . . .

79

5

Effective Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

81

6

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

84

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

84

Boundary Effects on the Interface Dynamics for the Stochastic

 

Allen–Cahn Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

87

Lorenzo Bertini, Stella Brassesco and Paolo Buttà

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

87

2

Results and Strategy of Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

89

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

92

Contents

 

 

xxix

Dimensional Entropies and Semi-Uniform Hyperbolicity . . . . . . . . . . . . . .

95

Jérôme Buzzi

 

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

95

2

Low Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

97

 

2.1

Interval Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

97

 

2.2

Surface Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . .

98

3

Dimensional Entropies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

99

 

3.1

Singular Disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

99

 

3.2

Entropy of Collections of Subsets . . . . . . . . . . . . . . . . . . . .

100

 

3.3

Definitions of the Dimensional Entropies . . . . . . . . . . . . . .

101

4

Other Growth Rates of Submanifolds . . . . . . . . . . . . . . . . . . . . . . . . .

102

 

4.1

Volume Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

102

 

4.2

Resolution Entropies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

106

5

Properties of Dimensional Entropies . . . . . . . . . . . . . . . . . . . . . . . . .

107

5.1Link between Topological and Resolution Entropies . . . . 107

5.2Gap Between Uniform and Ordinary Dimensional

Entropies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.3 Continuity Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6 Hyperbolicity from Entropies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.1 A Ruelle-Newhouse Type Inequality . . . . . . . . . . . . . . . . . 110 6.2 Entropy-Expanding Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.3 Entropy-Hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.4 Examples of Entropy-Hyperbolic Diffeomorphisms . . . . . 113

7 Further Directions and Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.1 Variational Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.2 Dimensional Entropies of Examples . . . . . . . . . . . . . . . . . . 113 7.3 Other Types of Dimensional Complexity . . . . . . . . . . . . . . 114 7.4 Necessity of Topological Assumptions . . . . . . . . . . . . . . . . 114 7.5 Entropy-Hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.6 Generalized Entropy-Hyperbolicity . . . . . . . . . . . . . . . . . . 115 8 Cr Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

The Scaling Limit of (Near-)Critical 2D Percolation . . . . . . . . . . . . . . . . . .

117

Federico Camia

 

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

117

 

1.1

Critical Scaling Limits and SLE . . . . . . . . . . . . . . . . . . . . .

117

 

1.2

Percolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

120

2

The Critical Loop Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

121

 

2.1

General Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

121

 

2.2

Construction of a Single Loop . . . . . . . . . . . . . . . . . . . . . . .

122

3

The Near-Critical Scaling Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

124

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

125

xxx

Contents

Black Hole Entropy Function and Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Gabriel Lopes Cardoso

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 2 Entropy Function and Electric/Magnetic Duality Covariance . . . . . 128 3 Application to N = 2 Supergravity . . . . . . . . . . . . . . . . . . . . . . . . . . 130 4 Duality Invariant OSV Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Weak Turbulence for Periodic NLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

135

James Colliander

 

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

135

2

NLS as an Infinite System of ODEs . . . . . . . . . . . . . . . . . . . . . . . . . .

137

3

Conditions on a Finite Set Λ Z2 . . . . . . . . . . . . . . . . . . . . . . . . . .

138

4

Arnold Diffusion for the Toy Model ODE . . . . . . . . . . . . . . . . . . . . .

139

5

Construction of the Resonant Set Λ . . . . . . . . . . . . . . . . . . . . . . . . . .

140

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

142

Angular Momentum-Mass Inequality for Axisymmetric Black Holes . . . .

143

Sergio Dain

 

 

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

143

2

Variational Principle for the Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . .

144

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

147

Almost Everything About the Fibonacci Operator . . . . . . . . . . . . . . . . . . . .

149

David Damanik

 

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

149

2

The Trace Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

150

3

The Cantor Structure and the Dimension of the Spectrum . . . . . . . .

152

4

The Spectral Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

154

5

Bounds on Wavepacket Spreading . . . . . . . . . . . . . . . . . . . . . . . . . . .

156

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

158

Entanglement-Assisted Quantum Error-Correcting Codes . . . . . . . . . . . . .

161

Igor Devetak, Todd A. Brun and Min-Hsiu Hsieh

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

161

2

Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

162

3

Entanglement-Assisted Quantum Error-Correcting Codes . . . . . . . .

163

 

3.1

The Channel Model: Discretization of Errors . . . . . . . . . .

164

 

3.2

The Entanglement-Assisted Canonical Code . . . . . . . . . . .

165

 

3.3

The General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

167

 

3.4

Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

169

 

3.5

Generalized F4 Construction . . . . . . . . . . . . . . . . . . . . . . . .

169

 

3.6

Bounds on Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . .

170

4

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

171

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

171

Contents

 

 

xxxi

Particle Decay in Ising Field Theory with Magnetic Field . . . . . . . . . . . . . .

173

Gesualdo Delfino

 

 

1

Ising Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

173

2

Evolution of the Mass Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

175

3

Particle Decay off the Critical Isotherm . . . . . . . . . . . . . . . . . . . . . . .

176

4

Unstable Particles in Finite Volume . . . . . . . . . . . . . . . . . . . . . . . . . .

182

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

184

Fluctuations and Large Deviations in Non-equilibrium Systems . . . . . . . .

187

Bernard Derrida

 

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

187

2

Large Deviation Function of the Density . . . . . . . . . . . . . . . . . . . . . .

188

3

Free Energy Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

189

4

Simple Exclusion Processes (SSEP) . . . . . . . . . . . . . . . . . . . . . . . . . .

191

5

The Large Deviation Function F (ρ (x)) for the SSEP . . . . . . . . . . .

193

6

The Matrix Ansatz for the Symmetric Exclusion Process . . . . . . . .

194

7

Additivity as a Consequence of the Matrix Ansatz . . . . . . . . . . . . . .

197

8

Large Deviation Function of Density Profiles . . . . . . . . . . . . . . . . . .

198

9

Non-locality of the Large Deviation Functional of the Density

 

 

and Long Range Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

200

10

The Macroscopic Fluctuation Theory . . . . . . . . . . . . . . . . . . . . . . . . .

202

11

Large Deviation of the Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

203

12

Generalized Detailed Balance and the Fluctuation Theorem . . . . . .

204

13

Current Fluctuations in the SSEP . . . . . . . . . . . . . . . . . . . . . . . . . . . .

206

14

The Additivity Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

207

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

209

Robust Heterodimensional Cycles and Tame Dynamics . . . . . . . . . . . . . . . .

211

Lorenzo J. Díaz

 

 

1

Robust Heterodimensional Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . .

211

 

1.1

General Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

211

 

1.2

Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

213

 

1.3

Robust Cycles at Heterodimensional Cycles . . . . . . . . . . .

214

 

1.4

Questions and Consequences . . . . . . . . . . . . . . . . . . . . . . . .

216

2

Cycles and Non-hyperbolic Tame Dynamics . . . . . . . . . . . . . . . . . . .

217

 

2.1

Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

217

 

2.2

Tangencies, Heterodimensional Cycles, and Examples . . .

218

3

Robust Homoclinic Tangencies, Non-dominated Dynamics, and

 

 

Heterodimensional Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

220

4

Ingredients of the Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . .

222

 

4.1

Strong Homoclinic Intersections of Saddle-Nodes . . . . . .

223

 

4.2

Model Blenders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

225

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

227

xxxii

 

 

Contents

Hamiltonian Perturbations of Hyperbolic PDEs: from Classification

 

Results to the Properties of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . 231

Boris Dubrovin

 

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 231

2

Towards Classification of Hamiltonian PDEs . . . . . . . . . . . . . . .

. . . 235

3

Deformation Theory of Integrable Hierarchies . . . . . . . . . . . . . .

. . . 238

4

Frobenius Manifolds and Integrable Hierarchies

 

 

of the Topological Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 249

5

Critical Behaviour in Hamiltonian PDEs, the Dispersionless

 

 

Case . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 264

6

Universality in Hamiltonian PDEs . . . . . . . . . . . . . . . . . . . . . . . .

. . . 269

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 273

Lattice Supersymmetry from the Ground Up . . . . . . . . . . . . . . . . . . . . . .

. . 277

Paul Fendley and Kareljan Schoutens

 

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 284

Convergence of Symmetric Trap Models in the Hypercube . . . . . . . . . . .

. . 285

L.R.G. Fontes and P.H.S. Lima

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 285

 

1.1

The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 286

2

Convergence to the K Process . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 287

 

2.1

Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 288

3

The REM-Like Trap Model and the Random Hopping Times

 

 

Dynamics for the REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 294

 

3.1

The REM-Like Trap Model . . . . . . . . . . . . . . . . . . . . . .

. . . 294

 

3.2

Random Hopping Times Dynamics for the REM . . . .

. . . 295

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 296

Spontaneous Replica Symmetry Breaking in the Mean Field Spin Glass Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 Francesco Guerra

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 2 The Mean Field Spin Glass Model. Basic Definitions . . . . . . . . . . . 302 3 The Thermodynamic Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 4 The Parisi Representation for the Free Energy . . . . . . . . . . . . . . . . . 305 5 Conclusion and Outlook for Future Developments . . . . . . . . . . . . . . 309

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

Surface Operators and Knot Homologies . . . . . . . . . . . . . . . . . . . . . . . . . . .

313

Sergei Gukov

 

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

313

2

Gauge Theory and Categorification . . . . . . . . . . . . . . . . . . . . . . . . . .

316

 

2.1

Incorporating Surface Operators . . . . . . . . . . . . . . . . . . . . .

318

 

2.2

Braid Group Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

320

Contents

 

 

xxxiii

3

Surface Operators and Knot Homologies in N = 2 Gauge

 

 

Theory .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 323

 

3.1

Donaldson-Witten Theory and the Equivariant Knot

 

 

 

Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

323

 

3.2

Seiberg-Witten Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

326

4

Surface Operators and Knot Homologies in N = 4 Gauge

 

 

Theory .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

330

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

340

Conformal Field Theory and Operator Algebras . . . . . . . . . . . . . . . . . . . . .

345

Yasuyuki Kawahigashi

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

345

2

Conformal Quantum Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . .

346

3

Representation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

349

4

Classification Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

350

5

Moonshine Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

352

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

354

Diffusion and Mixing in Fluid Flow: A Review . . . . . . . . . . . . . . . . . . . . . . .

357

Alexander Kiselev

 

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

357

2

The Heart of the Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

363

3

Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

367

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

368

Random Schrödinger Operators: Localization and Delocalization, and

All That . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

François Germinet and Abel Klein

1 Random Schrödinger Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

2 Basic Examples of Random Schrödinger Operators . . . . . . . . . . . . . 372

2.1 The Anderson (Tight-Binding) Model . . . . . . . . . . . . . . . . 373

2.2 The (Continuum) Anderson Hamiltonian . . . . . . . . . . . . . . 373

2.3 The Random Landau Hamiltonian . . . . . . . . . . . . . . . . . . . . 373

2.4 The Poisson Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

3 The Metal-Insulator Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

4 The Spectral Metal-Insulator Transition . . . . . . . . . . . . . . . . . . . . . . . 375

4.1 Anderson Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

4.2 Absolutely Continuous Spectrum . . . . . . . . . . . . . . . . . . . . 377

4.3The Spectral Metal-Insulator Transition

for the Anderson Model on the Bethe Lattice . . . . . . . . . . 377 5 The Dynamical Metal-Insulator Transition . . . . . . . . . . . . . . . . . . . . 378 5.1 Dynamical Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 5.2 Transport Exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 5.3 The Dynamical Spectral Regions . . . . . . . . . . . . . . . . . . . . 380 5.4 The Region of Complete Localization . . . . . . . . . . . . . . . . 381

xxxiv

 

 

Contents

6

The Dynamical Transition in the Random Landau Hamiltonian

. . . 382

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 384

Unifying R-Symmetry in M-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . 389

Axel Kleinschmidt

 

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 389

2

Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 392

 

2.1

Definition of e10 and K(e10) . . . . . . . . . . . . . . . . . . . . .

. . . 392

 

2.2

Level Decompositions for D = 11, IIA and IIB . . . . .

. . . 393

 

2.3

Representations of K(e10) . . . . . . . . . . . . . . . . . . . . . . .

. . . 394

3

Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 396

4

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 398

 

4.1

Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 398

 

4.2

Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 399

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 400

Stable Maps are Dense in Dimensional One . . . . . . . . . . . . . . . . . . . . . . .

. . 403

Oleg Kozlovski, and Sebastian van Strien

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 403

2

Density of Hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 404

3

Quasi-Conformal Rigidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 405

4

How to Prove Rigidity? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 405

 

4.1

The Strategy of the Proof of QC-Rigidity . . . . . . . . . . .

. . . 406

5

Enhanced Nest Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 407

6

Small Distortion of Thin Annuli . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 409

7

Approximating Non-renormalizable Complex Polynomials . . .

. . . 411

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 412

Large Gap Asymptotics for Random Matrices . . . . . . . . . . . . . . . . . . . . .

. . 413

Igor Krasovsky

 

 

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 419

On the Derivation of Fourier’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . 421

Antti Kupiainen

 

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 421

2

Coupled Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 422

3

Closure Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 424

4

Kinetic Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 427

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 431

Noncommutative Manifolds and Quantum Groups . . . . . . . . . . . . . . . . .

. . 433

Giovanni Landi

 

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 433

2

The Algebras and the Representations . . . . . . . . . . . . . . . . . . . . .

. . . 435

 

2.1

The Algebras of Functions and of Symmetries . . . . . .

. . . 435

 

2.2

The Equivariant Representation of A (SUq (2)) . . . . . .

. . . 438

 

2.3

The Spin Representation . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 439

Contents

xxxv

3 The Equivariant Dirac Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 4 The Real Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444 4.1 The Tomita Operator of the Regular Representation . . . . . 444 4.2 The Real Structure on Spinors . . . . . . . . . . . . . . . . . . . . . . . 445

5 The Local Index Formula for SUq (2) . . . . . . . . . . . . . . . . . . . . . . . . . 447 5.1 The Cosphere Bundle and the Dimension Spectrum . . . . . 448

5.2The Local Index Formula for 3-Dimensional

Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

5.3 The Pairing Between H C1 and K1 . . . . . . . . . . . . . . . . . . . 452

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

Topological Strings on Local Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 Marcos Mariño

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 2 Topological Strings on Local Curves . . . . . . . . . . . . . . . . . . . . . . . . . 459 2.1 A Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459 2.2 Relation to Hurwitz Theory . . . . . . . . . . . . . . . . . . . . . . . . . 460 2.3 Mirror Symmetry from Large Partitions . . . . . . . . . . . . . . . 462 2.4 Higher Genus and Matrix Models . . . . . . . . . . . . . . . . . . . . 464

3 Phase Transitions, Critical Behavior and Double-Scaling Limit . . . 465

3.1Review of Phase Transitions in Topological String

Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 3.2 Phase Transitions for Local Curves . . . . . . . . . . . . . . . . . . . 467 4 Non-perturbative Effects and Large Order Behavior . . . . . . . . . . . . . 469 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

Repeated Interaction Quantum Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . .

475

Marco Merkli

 

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

475

2

Deterministic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

477

 

2.1

Mathematical Description . . . . . . . . . . . . . . . . . . . . . . . . . .

477

 

2.2

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

481

 

2.3

Asymptotic State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

481

 

2.4

Correlations & Reconstruction of Initial State . . . . . . . . . .

482

3

Random Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

482

 

3.1

Dynamics and Random Matrix Products . . . . . . . . . . . . . .

482

 

3.2

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

484

4

An Example: Spins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

486

5

Some Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

490

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

494

String-Localized Quantum Fields, Modular Localization, and Gauge

 

Theories .

. . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

495

Jens Mund

 

 

 

1

The Notion of String-Localized Quantum Fields . . . . . . . . . . . . . . .

495

xxxvi

Contents

2 Modular Localization and the Construction of Free

String-Localized Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 3 Results on Free String-Localized Fields . . . . . . . . . . . . . . . . . . . . . . . 499 3.1 Fields and Two-Point Functions . . . . . . . . . . . . . . . . . . . . . 499 3.2 Feynman Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

4 Outlook: Interacting String-Localized Fields . . . . . . . . . . . . . . . . . . . 504 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

Kinks and Particles in Non-integrable Quantum Field Theories . . . . . . . . 509

Giuseppe Mussardo

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

2 A Semiclassical Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513

3 Symmetric Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

4 Asymmetric Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

Exponential Decay Laws in Perturbation Theory of Threshold

and Embedded Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

525

Arne Jensen and Gheorghe Nenciu

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

525

2

The Basic Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

528

3

The Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

530

 

3.1

Properly Embedded Eigenvalues . . . . . . . . . . . . . . . . . . . . .

530

 

3.2

Threshold Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

531

4

A Uniqueness Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

533

5

Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

534

 

5.1

Example 1: One Channel Case, ν = −1 . . . . . . . . . . . . . .

534

 

5.2

Example 2: Two Channel Case, ν = −1, 1 . . . . . . . . . . . .

535

 

5.3

Example 3: Two Channel Radial Case, ν 3 . . . . . . . . . .

536

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

537

Energy Diffusion and Superdiffusion in Oscillators Lattice Networks . . . .

539

Stefano Olla

 

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

539

2

Conservative Stochastic Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . .

541

3

Diffusive Evolution: Green-Kubo Formula . . . . . . . . . . . . . . . . . . . .

544

4

Kinetic Limits: Phonon Boltzmann Equation . . . . . . . . . . . . . . . . . .

545

5

Levy’s Superdiffusion of Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

546

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

546

Trying to Characterize Robust and Generic Dynamics . . . . . . . . . . . . . . . .

549

Enrique R. Pujals

 

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

549

2

Robust Transitivity: Hyperbolicity, Partial Hyperbolicity

 

 

and Dominated Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

551

Contents

 

xxxvii

2.1

Hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 553

2.2

Partial Hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 554

2.3

Dominated Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 555

2.4

A General Question About “Weak Form

 

 

of Hyperbolicity” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 557

2.5

Robust Transitivity and Mechanisms:

 

Heterodimensional Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

3 Wild Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

3.1 Wild Dynamic and Homoclinic Tangency . . . . . . . . . . . . . 558

3.2 Surfaces Diffeomorphisms and Beyond . . . . . . . . . . . . . . . 559

4 Generic Dynamics: Mechanisms and Phenomenas . . . . . . . . . . . . . . 560

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

Dynamics of Bose-Einstein Condensates . . . . . . . . . . . . . . . . . . . . . . . . . . . .

565

Benjamin Schlein

 

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

565

2

Heuristic Derivation of the Gross-Pitaevskii Equation . . . . . . . . . . .

567

3

Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

571

4

General Strategy of the Proof and Previous Results . . . . . . . . . . . . .

574

5

Convergence to the Infinite Hierarchy . . . . . . . . . . . . . . . . . . . . . . . .

576

6

Uniqueness of the Solution to the Infinite Hierarchy . . . . . . . . . . . .

580

 

6.1

Higher Order Energy Estimates . . . . . . . . . . . . . . . . . . . . . .

581

 

6.2

Expansion in Feynman Graphs . . . . . . . . . . . . . . . . . . . . . .

583

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

589

Locality Estimates for Quantum Spin Systems . . . . . . . . . . . . . . . . . . . . . . .

591

Bruno Nachtergaele and Robert Sims

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

591

2

Lieb-Robinson Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

593

3

Quasi-Locality of the Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

598

4

Exponential Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

601

5

The Lieb-Schultz-Mattis Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . .

604

 

5.1

The Result and Some Words on the Proof . . . . . . . . . . . . .

605

 

5.2

A More Detailed Outline of the Proof . . . . . . . . . . . . . . . . .

607

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

614

On Resolvent Identities in Gaussian Ensembles at the Edge

 

of the Spectrum . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

615

Alexander Soshnikov

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

615

2

Proof of Theorems 1 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

622

3

Proof of Theorems 4 and 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

624

4

Non-Gaussian Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

625

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

626

xxxviii

Contents

Energy Current Correlations for Weakly Anharmonic Lattices . . . . . . . . . 629 Herbert Spohn

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629 2 Anharmonic Lattice Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630 3 Energy Current Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633 4 The Linearized Collision Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 637 5 Gaussian Fluctuation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

Metastates, Translation Ergodicity, and Simplicity of Thermodynamic

 

States in Disordered Systems: an Illustration . . . . . . . . . . . . . . . . . . . . . . . .

643

Charles M. Newman and Daniel L. Stein

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

643

2

The Sherrington-Kirkpatrick Model and the Parisi Replica

 

 

Symmetry Breaking Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

644

3

Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

645

4

Metastates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

645

5

Invariance and Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

646

6

A Strategy for Rigorous Studies of Spin Glasses . . . . . . . . . . . . . . .

647

7

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

651

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

651

Random Matrices, Non-intersecting Random Walks, and Some Aspects

of Universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653

Toufic M. Suidan

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653

1.1 Selected Basic Facts from Random Matrix Theory . . . . . . 654

1.2 The Karlin-McGregor Formula . . . . . . . . . . . . . . . . . . . . . . 654

2 The Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655

2.1Longest Increasing Subsequence of a Random

 

 

Permutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

655

 

2.2

ABC-Hexagon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

657

 

2.3

Last Passage Percolation . . . . . . . . . . . . . . . . . . . . . . . . . . .

657

 

2.4

Non-intersecting Brownian Motion . . . . . . . . . . . . . . . . . . .

660

3

Universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

661

 

3.1

Last Passage Percolation . . . . . . . . . . . . . . . . . . . . . . . . . . .

662

 

3.2

Non-intersecting Random Walks . . . . . . . . . . . . . . . . . . . . .

662

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

664

Homogenization of Periodic Differential Operators as a Spectral

Threshold Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667 Mikhail S. Birman and Tatiana A. Suslina

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667 2 Periodic DO’s. The Effective Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 668 3 Homogenization of Periodic DO’s. Principal Term

of Approximation for the Resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . 670

Contents

xxxix

4 More Accurate Approximation for the Resolvent

in the L2-Operator Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671 5 (L2 H 1)-Approximation of the Resolvent. Approximation

of the Fluxes in L2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673 6 The Method of Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674 7 Some Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678 8 On Further Development of the Method . . . . . . . . . . . . . . . . . . . . . . 681 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682

ABCD and ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685 Patrick Dorey, Clare Dunning, Davide Masoero, Junji Suzuki and

Roberto Tateo

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685 2 Bethe Ansatz for Classical Lie Algebras . . . . . . . . . . . . . . . . . . . . . . 688 3 The Pseudo-Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 689 4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694

Nonrational Conformal Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697 Jörg Teschner

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697 2 Constraints from Conformal Symmetry . . . . . . . . . . . . . . . . . . . . . . . 699

2.1Motivation: Chiral Factorization of Physical Correlation

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699 2.2 Vertex Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700 2.3 Representations of Vertex Algebras . . . . . . . . . . . . . . . . . . 701 2.4 Conformal Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701 2.5 Correlation Functions vs. Hermitian Forms . . . . . . . . . . . . 703

3 Behavior Near the Boundary of Moduli Space . . . . . . . . . . . . . . . . . 704 3.1 Gluing of Riemann Surfaces . . . . . . . . . . . . . . . . . . . . . . . . 705 3.2 Gluing of Conformal Blocks . . . . . . . . . . . . . . . . . . . . . . . . 708 3.3 Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710 3.4 Conformal Blocks as Matrix Elements . . . . . . . . . . . . . . . . 712

4 From one Boundary to Another . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713 4.1 The Modular Groupoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714

4.2Representation of the Generators on Spaces

of Conformal Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717

4.3Representation of the Relations on Spaces of Conformal

Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718 5 Notion of a Stable Modular Functor . . . . . . . . . . . . . . . . . . . . . . . . . . 719 5.1 Towers of Representations of the Modular Groupoid . . . . 719 5.2 Unitary Modular Functors . . . . . . . . . . . . . . . . . . . . . . . . . . 721 5.3 Similarity of Modular Functors . . . . . . . . . . . . . . . . . . . . . . 722 5.4 Friedan-Shenker Modular Geometry . . . . . . . . . . . . . . . . . . 722

6 Example of a Nonrational Modular Functor . . . . . . . . . . . . . . . . . . . 723

xl

Contents

6.1Unitary Positive Energy Representations of the Virasoro

Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724

6.2Construction of Virasoro Conformal Blocks in Genus

Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725 6.3 Factorization Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726 6.4 The Hilbert Space Structure . . . . . . . . . . . . . . . . . . . . . . . . . 727 6.5 Extension to Higher Genus . . . . . . . . . . . . . . . . . . . . . . . . . . 728 6.6 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729

7 Existence of a Canonical Scalar Product? . . . . . . . . . . . . . . . . . . . . . 729

7.1Existence of a Canonical Hermitian Form

from the Factorization Property . . . . . . . . . . . . . . . . . . . . . . 730 7.2 Unitary Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732 7.3 Associativity of Unitary Fusion . . . . . . . . . . . . . . . . . . . . . . 733 7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735

8 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735

8.1Modular Functors from W-algebras and Langlands

Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735

8.2 Boundary CFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736

8.3 Nonrational Verlinde Formula? . . . . . . . . . . . . . . . . . . . . . . 736

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738

Kinetically Constrained Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741

Nicoletta Cancrini, Fabio Martinelli, Cyril Roberto and Cristina Toninelli

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751

The Distributions of Random Matrix Theory and their Applications . . . . 753 Craig A. Tracy and Harold Widom

1 Random Matrix Models: Gaussian Ensembles . . . . . . . . . . . . . . . . . 753

1.1Largest Eigenvalue Distributions Fβ . Painlevé II

Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754

1.2Next-Largest, Next-Next Largest, Etc. Eigenvalue

Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757

2 Universality Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757

2.1 Invariant Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757

2.2 Wigner Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759

3 Multivariate Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759

3.1 Principal Component Analysis (PCA) . . . . . . . . . . . . . . . . 760

3.2 Testing the Null Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . 760

3.3 Spiked Populations: BBP Phase Transition . . . . . . . . . . . . 761

4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763

Hybrid Formalism and Topological Amplitudes . . . . . . . . . . . . . . . . . . . . . . 767 Jürg Käppeli and Stefan Theisen and Pierre Vanhove

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767 2 Compactified String Theory in RNS and Hybrid Variables . . . . . . . 768

Contents

 

 

xli

 

2.1

Hybrid Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

768

 

2.2

RNS Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

772

 

2.3

Field Redefinition from RNS to Hybrid Variables . . . . . . .

773

 

2.4

Physical State Conditions and N = 4-embeddings . . . . .

776

 

2.5

Massless Vertex Operators . . . . . . . . . . . . . . . . . . . . . . . . . .

778

3

Amplitudes and Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . .

780

 

3.1

Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

780

 

3.2

Correlation Functions of Chiral Bosons . . . . . . . . . . . . . . .

782

4

Topological Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

783

 

4.1

Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

783

 

4.2

R-charge (g 1, g 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . .

784

 

4.3

R-charge (1 g, 1 g) . . . . . . . . . . . . . . . . . . . . . . . . . . . .

785

 

4.4

R-charges (g 1, 1 g) and (1 g, g 1) . . . . . . . . . . .

787

 

4.5

Summary of the Amplitude Computation . . . . . . . . . . . . . .

788

A

Appendix: Conventions and Notations . . . . . . . . . . . . . . . . . . . . . . . .

789

 

A.1

Spinors and Superspace . . . . . . . . . . . . . . . . . . . . . . . . . . . .

789

 

A.2

Hybrid Variables and N = 2 Algebra . . . . . . . . . . . . . . . .

790

 

A.3

The Integrated Vertex Operator . . . . . . . . . . . . . . . . . . . . . .

791

B

Appendix: Mapping the RNS to the Hybrid Variables . . . . . . . . . . .

792

 

B.1

Field Redefinition from RNS to Chiral GS Variables . . . .

792

 

B.2

Similarity Transformation Relating Chiral GS

 

 

 

to Hybrid Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

792

 

B.3

Hermitian Conjugation of the Hybrid Variables . . . . . . . . .

793

 

B.4

Hermitian Conjugation of the RNS Variables . . . . . . . . . .

794

C

Appendix: Vertex Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

797

 

C.1

Massless RNS Vertex Operators . . . . . . . . . . . . . . . . . . . . .

797

 

C.2

Universal Massless Multiplets . . . . . . . . . . . . . . . . . . . . . . .

799

 

C.3

Compactification Dependent Massless Multiplets . . . . . . .

799

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

802

Quantum Phases of Cold Bosons in an Optical Lattice . . . . . . . . . . . . . . . .

805

Michael Aizenman, Elliot H. Lieb, Robert Seiringer, Jan Philip Solovej and

 

Jakob Yngvason

 

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

806

2

Reflection Positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

810

3

Proof of BEC for Small λ and T . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

811

4

Absence of BEC and Mott Insulator Phase . . . . . . . . . . . . . . . . . . . .

816

5

The Non-interacting Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

820

6

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

821

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

821

Random Walks in Random Environments in the Perturbative Regime . . .

823

Ofer Zeitouni

 

 

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

823

2

Local Limits for Exit Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

825

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

826

xlii

 

 

Contents

Appendix: Complete List of Abstracts . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . 827

YRS and XV ICMP

 

 

1

Young Researchers Symposium Plenary Lectures . . . . . . . . . . .

. . . 827

2

XV International Congress on Mathematical Physics Plenary

 

 

Lectures

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 830

3

XV International Congress on Mathematical Physics Specialized

 

Sessions

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 835

 

3.1

Condensed Matter Physics . . . . . . . . . . . . . . . . . . . . . . .

. . . 835

 

3.2

Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 836

 

3.3

Equilibrium Statistical Mechanics . . . . . . . . . . . . . . . . .

. . . 839

 

3.4

Non-equilibrium Statistical Mechanics . . . . . . . . . . . . .

. . . 840

 

3.5

Exactly Solvable Systems . . . . . . . . . . . . . . . . . . . . . . . .

. . . 843

 

3.6

General Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 844

 

3.7

Operator Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 846

 

3.8

Partial Differential Equations . . . . . . . . . . . . . . . . . . . . .

. . . 847

 

3.9

Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 849

 

3.10

Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 850

 

3.11

Quantum Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 852

 

3.12

2D Quantum Field Theory . . . . . . . . . . . . . . . . . . . . . . .

. . . 854

 

3.13

Quantum Information . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 855

 

3.14

Random Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 858

 

3.15

Stochastic PDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 860

 

3.16

String Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 861

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865

Entropy of Eigenfunctions

Nalini Anantharaman, Herbert Koch and Stéphane Nonnenmacher

Abstract We study the high-energy limit for eigenfunctions of the Laplacian, on a compact negatively curved manifold. We review the recent result of Anantharaman– Nonnenmacher (Ann. Inst. Fourier 57(7):2465–2523, 2007) giving a lower bound on the Kolmogorov–Sinai entropy of semiclassical measures. The bound proved here improves that result in the case of variable negative curvature.

1 Motivations

The theory of quantum chaos tries to understand how the chaotic behaviour of a classical Hamiltonian system is reflected in its quantum counterpart. For instance, let M be a compact Riemannian Cmanifold, with negative sectional curvatures. The geodesic flow has the Anosov property, which is considered as the ideal chaotic behaviour in the theory of dynamical systems. The corresponding quantum dynamics is the unitary flow generated by the Laplace-Beltrami operator on L2(M). One expects that the chaotic properties of the geodesic flow influence the spectral theory of the Laplacian. The Random Matrix conjecture [7] asserts that the large eigenvalues should, after proper unfolding, statistically resemble those of a large random matrix, at least for a generic Anosov metric. The Quantum Unique Ergodicity conjecture [26] (see also [6, 30]) describes the corresponding eigenfunctions ψk : it claims that the probability measure |ψk (x)|2dx should approach (in the weak topology) the

Nalini Anantharaman

CMLS, École Polytechnique, 91128 Palaiseau, France, e-mail: nalini@math.polytechnique.fr

Herbert Koch

Mathematical Institute, University of Bonn, Beringstraße 1, 53115 Bonn, Germany, e-mail: koch@math.uni-bonn.de

Stéphane Nonnenmacher

Institut de Physique Théorique, CEA/DSM/PhT, Unité de recherche associée au CNRS, CEA/Saclay, 91191 Gif-sur-Yvette, France, e-mail: snonnenmacher@cea.fr

V. Sidoraviciusˇ (ed.), New Trends in Mathematical Physics,

1

© Springer Science + Business Media B.V. 2009

 

2

Nalini Anantharaman, Herbert Koch and Stéphane Nonnenmacher

Riemannian volume, when the eigenvalue tends to infinity. In fact a stronger property should hold for the Wigner transform Wψ , a function on the cotangent bundle T M, (the classical phase space) which simultaneously describes the localization of the wave function ψ in position and momentum.

We will adopt a semiclassical point of view, that is consider the eigenstates of eigenvalue unity of the semiclassical Laplacian 2 , thereby replacing the highenergy limit by the semiclassical limit 0. We denote by k )k N an orthonor-

mal basis of L2(M) made of eigenfunctions of the Laplacian, and by (12 )k N the

k

corresponding eigenvalues:

k2 ψk = ψk , with k+1 k .

(1)

We are interested in the high-energy eigenfunctions of , in other words the semiclassical limit k 0.

The Wigner distribution associated to an eigenfunction ψk is defined by

W

(a)

=

Op

(a)ψ

, ψ

2

(M)

, a

 

C

(T M).

k

 

k

k

 

k L

 

 

c

Here Op k is a quantization procedure, set at the scale (wavelength) k , which associates to any smooth phase space function a (with nice behaviour at infinity) a bounded operator on L2(M). See for instance [13] or [14] for various quantizations Op on Rd . On a manifold, one can use local coordinates to define Op in a finite system of charts, then glue the objects defined locally thanks to a smooth partition of unity [11]. For standard quantizations Op k , the Wigner distribution is of the form Wk (x, ξ ) dx dξ , where Wk (x, ξ ) is a smooth function on T M, called the Wigner transform of ψ . If a is a function on the manifold M, Op (a) can be taken as the multiplication by a, and thus we have Wk (a) = M a(x)|ψk (x)|2dx: the Wigner transform is thus a microlocal lift of the density |ψk (x)|2. Although the definition of Wk depends on a certain number of choices, like the choice of local coordinates, or of the quantization procedure (Weyl, anti-Wick, “right” or “left” quantization. . . ), its asymptotic behaviour when k 0 does not. Accordingly, we call semiclassical measures the limit points of the sequence (Wk )k N, in the distribution topology.

In the semiclassical limit, “quantum mechanics converges to classical mechanics”. We will denote | · |x the norm on Tx M given by the metric. The geodesic flow (gt )t R is the Hamiltonian flow on T M generated by the Hamiltonian H (x, ξ ) =

|ξ2|2x . A quantization of this Hamiltonian is given by the rescaled Laplacian 22 , which generates the unitary flow (U t ) = (exp(it 2 )) acting on L2(M). The semiclassical correspondence of the flows (U t ) and (gt ) is expressed through the Egorov Theorem:

Theorem 1. Let a Cc(T M). Then, for any given t in R,

 

U

t Op (a)U t

Op (a

gt ) 2

(M)

= O

( ),

0.

(2)

 

 

 

 

L

 

 

 

The constant implied in the remainder grows (often exponentially) with t , which represents a notorious problem when one wants to study the large time behaviour of

Entropy of Eigenfunctions

3

(U t ). Typically, the quantum-classical correspondence will break down for times t of the order of the Ehrenfest time (34).

Using (2) and other standard semiclassical arguments, one shows the following:

Proposition 2. Any semiclassical measure is a probability measure carried on the energy layer E = H 1( 12 ) (which coincides with the unit cotangent bundle S M). This measure is invariant under the geodesic flow.

Let us call M the set of gt -invariant probability measures on E . This set is convex and compact for the weak topology. If the geodesic flow has the Anosov property— for instance if M has negative sectional curvature—that set is very large. The geodesic flow has countably many periodic orbits, each of them carrying an invariant probability measure. There are many other invariant measures, like the equilibrium states obtained by variational principles [19], among them the Liouville measure μLiouv, and the measure of maximal entropy. Note that, for all these examples of measures, the geodesic flow acts ergodically, meaning that these examples are extremal points in M. Our aim is to determine, at least partially, the set Msc formed by all possible semiclassical measures. By its definition, Msc is a closed subset of M, in the weak topology.

For manifolds such that the geodesic flow is ergodic with respect to the Liouville measure, it has been known for some time that almost all eigenfunctions become equidistributed over E , in the semiclassical limit. This property is dubbed as Quantum Ergodicity:

Theorem 3 ([27, 32, 11]). Let M be a compact Riemannian manifold, assume that the action of the geodesic flow on E = S M is ergodic with respect to the Liouville measure. Let k )k N be an orthonormal basis of L2(M) consisting of eigenfunc-

tions of the Laplacian (1), and let (Wk ) be the associated Wigner distributions on

T M.

Then, there exists a subset S N of density 1, such that

Wk μLiouv, k → ∞, k S .

(3)

The question of existence of “exceptional” subsequences of eigenstates with a different behaviour is still open. On a negatively curved manifold, the geodesic flow satisfies the ergodicity assumption, and in fact much stronger properties: mixing, K-property, etc. For such manifolds, it has been postulated in the Quantum Unique Ergodicity conjecture [26] that the full sequence of eigenstates becomes semiclassically equidistributed over E : one can take S = N in the limit (3). In other words, this conjecture states that there exists a unique semiclassical measure,

and Msc = {μLiouv}.

So far the most precise results on this question were obtained for manifolds M with constant negative curvature and arithmetic properties: see Rudnick–Sarnak [26], Wolpert [31]. In that very particular situation, there exists a countable commutative family of self-adjoint operators commuting with the Laplacian: the Hecke operators. One may thus decide to restrict the attention to common bases of eigen-

4

Nalini Anantharaman, Herbert Koch and Stéphane Nonnenmacher

functions, often called “arithmetic” eigenstates, or Hecke eigenstates. A few years ago, Lindenstrauss [24] proved that any sequence of arithmetic eigenstates become asymptotically equidistributed. If there is some degeneracy in the spectrum of the Laplacian, note that it could be possible that the Quantum Unique Ergodicity conjectured by Rudnick and Sarnak holds for one orthonormal basis but not for another. On such arithmetic manifolds, it is believed that the spectrum of the Laplacian has bounded multiplicity: if this is really the case, then the semiclassical equidistribution easily extends to any sequence of eigenstates.

Nevertheless, one may be less optimistic when extending the Quantum Unique Ergodicity conjecture to more general systems. One of the simplest example of a symplectic Anosov dynamical system is given by linear hyperbolic automorphisms of the 2-torus, e.g. Arnold’s “cat map” 21 11 . This system can be quantized into a sequence of N × N unitary matrices—the propagators, where N 1 [18]. The eigenstates of these matrices satisfy a Quantum Ergodicity theorem similar with Theorem 3, meaning that almost all eigenstates become equidistributed on the torus in the semiclassical limit [9]. Besides, one can choose orthonormal eigenbases of the propagators, such that the whole sequence of eigenstates is semiclassically equidistributed [22]. Still, because the spectra of the propagators are highly degenerate, one can also construct sequences of eigenstates with a different limit measure [16], for instance, a semiclassical measure consisting in two ergodic components: half of it is the Liouville measure, while the other half is a Dirac peak on a single (unstable) periodic orbit. It was also shown that this half-localization is maximal for this model [15]: a semiclassical measure cannot have more than half its mass carried by a countable union of periodic orbits. The same type of half-localized eigenstates were constructed by two of the authors for another solvable model, namely the “Walsh quantization” of the baker’s map on the torus [3]; for that model, there exist ergodic semiclassical measures of purely fractal type (that is, without any Liouville component). Another type of semiclassical measure was recently obtained by Kelmer for quantized hyperbolic automorphisms on higher-dimensional tori [20]: it consists in the Lebesgue measure on some invariant co-isotropic subspace of the torus.

For these Anosov models on tori, the construction of exceptional eigenstates strongly uses nongeneric algebraic properties of the classical and quantized systems, and cannot be generalized to nonlinear systems.

2 Main Result

In order to understand the set Msc, we will attempt to compute the Kolmogorov– Sinai entropies of semiclassical measures. We work on a compact Riemannian manifold M of arbitrary dimension, and assume that the geodesic flow has the Anosov property. Actually, our method can without doubt be adapted to more general Anosov Hamiltonian systems.

Entropy of Eigenfunctions

5

The Kolmogorov–Sinai entropy, also called metric entropy, of a (gt )-invariant probability measure μ is a nonnegative number hKS (μ) that describes, in some sense, the complexity of a μ-typical orbit of the flow. The precise definition will be given later, but for the moment let us just give a few facts. A measure carried on a closed geodesic has vanishing entropy. In constant curvature, the entropy is maximal for the Liouville measure. More generally, for any Anosov flow, the energy layer E is foliated into unstable manifolds of the flow. An upper bound on the entropy of an invariant probability measure is then provided by the Ruelle inequality:

hKS (μ) log J u(ρ)dμ(ρ) . (4)

E

In this inequality, J u(ρ) is the unstable Jacobian of the flow at the point ρ E , defined as the Jacobian of the map g1 restricted to the unstable manifold at the point g1ρ (note that the average of log J u over any invariant measure is negative). The equality holds in (4) if and only if μ is the Liouville measure on E [23]. If M has dimension d and has constant sectional curvature 1, the above inequality just reads hKS (μ) d 1.

Finally, an important property of the metric entropy is that it is an affine functional on M. According to the Birkhoff ergodic theorem, for any μ M and for μ-almost every ρ E , the weak limit

μρ = t lim

1

t

δgs ρ ds

 

 

 

t

| |→∞

 

 

0

exists, and is an ergodic probability measure. We can then write

μ = μρ dμ(ρ),

E

which realizes the ergodic decomposition of μ. The affineness of the KS entropy means that

hKS (μ) = hKS ρ )dμ(ρ).

E

An obvious consequence is the fact that the range of hKS on M is an interval

[0, hmax].

In the whole article, we consider a certain subsequence of eigenstates kj )j N of the Laplacian, such that the corresponding sequence of Wigner distributions (Wkj ) converges to a semiclassical measure μ. In the following, the subsequence kj )j N will simply be denoted by (ψ ) 0, using the slightly abusive notation ψ = ψ kj for the eigenstate ψkj . Each eigenstate ψ thus satisfies

2 1 ψ = 0.

(5)

log supρ E |dgρt | is the maximal expan-

6

Nalini Anantharaman, Herbert Koch and Stéphane Nonnenmacher

In [2] the first author proved that the entropy of any μ Msc is strictly positive. In [4], more explicit lower bounds were obtained. The aim of this paper is to improve the lower bounds of [4] into the following

Theorem 4. Let μ be a semiclassical measure associated to the eigenfunctions of the Laplacian on M. Then its metric entropy satisfies

h

KS

(μ)

 

log J u(ρ)dμ(ρ)

(d 1)

λ

max

,

(6)

E

2

 

 

 

 

 

 

where d = dim M and λmax = limt →±∞ 1t sion rate of the geodesic flow on E .

In particular, if M has constant sectional curvature 1, we have

 

 

h

KS

(μ)

d 1

.

(7)

 

 

2

 

 

 

 

 

 

In dimension d, we always have

 

 

 

 

 

E log J u(ρ)dμ(ρ)

(d 1max,

 

so the above bound is an improvement over the one obtained in [4],

 

3

E log J u(ρ)dμ(ρ) (d 1max.

 

hKS (μ)

 

(8)

2

In the case of constant or little-varying curvature, the bound (7) is much sharper than the one proved in [2]. On the other hand, if the curvature varies a lot (still being negative everywhere), the right hand side of (6) may actually be negative, in which case the bound is trivial. We believe this “problem” to be a technical shortcoming of our method, and actually conjecture the following bound:

hKS (μ)

1

E log J u(ρ)dμ(ρ) .

(9)

2

Extended to the case of the quantized torus automorphisms or the Walsh-quantized baker’s map, this bound is saturated for the half-localized semiclassical measures constructed in [16], as well as those obtained in [20, 3]. This bound allows certain ergodic components to be carried by closed geodesics, as long as other components have positive entropy. This may be compared with the following result obtained by Bourgain and Lindenstrauss in the case of arithmetic surfaces:

Theorem 5 ([8]). Let M be a congruence arithmetic surface, and j ) an orthonormal basis of eigenfunctions for the Laplacian and the Hecke operators.

Let μ be

a corresponding semiclassical measure, with ergodic decompo-

sition μ =

E μρ dμ(ρ). Then, for μ-almost all ergodic components we have

hKS ρ ) 91 .

 

K
i=1 Ei . We will denote the

Entropy of Eigenfunctions

7

As discussed above, the Liouville measure is the only one satisfying hKS (μ) = | E log J u(ρ) dμ(ρ)| [23], so the Quantum Unique Ergodicity would be proven in one could replace 1/2 by 1 on the right hand side of (9). However, we believe that (9) is the optimal result that can be obtained without using much more precise information, like for instance a sharp control on the spectral degeneracies, or fine information on the lengths of closed geodesics.

Indeed, in the above mentioned examples of Anosov systems where the Quantum Unique Ergodicity conjecture is wrong and the bound (9) sharp, the quantum spectrum has very high degeneracies, which could be responsible for the possibility to construct exceptional eigenstates. Such high degeneracies are not expected in the case of the Laplacian on a negatively curved manifold. For the moment, however, there is no clear understanding of the precise relation between spectral degeneracies and failure of Quantum Unique Ergodicity.

3 Outline of the Proof

We start by recalling the definition and some properties of the metric entropy associated with a probability measure on T M, invariant through the geodesic flow. In Sect. 3.2 we extend the notion of entropy to the quantum framework. Our approach is semiclassical, so we want the classical and quantum entropies to be connected in some way when 0. The weights appearing in our quantum entropy are estimated in Theorem 6, which was proven and used in [2]. In Sect. 3.2.1 we also compare our quantum entropy with several “quantum dynamical entropies” previously defined in the literature. The proof of Theorem 4 actually starts in Sect. 3.3, where we present the algebraic tool allowing us to take advantage of our estimates (18) (or their optimized version given in Theorem 11), namely an “entropic uncertainty principle” specific of the quantum framework. From Sect. 3.4 on, we apply this “principle” to the quantum entropies appearing in our problem, and proceed to prove Theorem 4. Although the method is basically the same as in [4], several small modifications allow to finally obtain the improved lower bound (6), and also simplify some intermediate proofs, as explained in Remark 12.

3.1 Definition of the Metric Entropy

In this paper we will meet several types of entropies, all of which are defined using the function η(s) = −s log s, for s [0, 1]. We start with the Kolmogorov–Sinai entropy of the geodesic flow with respect to an invariant probability measure.

Let μ be a probability measure on the cotangent bundle T M. Let P = (E1, . . . , EK ) be a finite measurable partition of T M: T M =

set of indices {1, . . . , K} = [[1, K]]. The Shannon entropy of μ with respect to the partition P is defined as

8

Nalini Anantharaman, Herbert Koch and Stéphane Nonnenmacher

 

K

K

 

 

hP (μ) = − μ(Ek ) log μ(Ek ) =

η μ(Ek ) .

 

 

k=1

k=1

 

For any integer n 1, we denote by P n the partition formed by the sets

 

 

Eα = Eα0 g1Eα1 ∩ · · · ∩ gn+1Eαn1 ,

(10)

where α = 0, . . . , αn1) can be any sequence in [[1, K]]n (such a sequence is said to be of length |α| = n). The partition P n is called the n-th refinement of the initial partition P = P 1. The entropy of μ with respect to P n is denoted by

hn(μ, P ) = hP n (μ) =

η μ(Eα ) .

(11)

 

α [[1,K]]n

 

If μ is (gt )-invariant, it follows from the convexity of the logarithm that

 

n, m 1, hn+m(μ, P ) hn(μ, P ) + hm(μ, P ),

(12)

in other words the sequence (hn(μ, P ))n N is subadditive. The entropy of μ with respect to the action of the geodesic flow and to the partition P is defined by

hKS (μ, P ) = n lim

hn(μ, P )

inf

hn(μ, P )

(13)

 

 

.

n

 

= n

N

n

 

→+∞

 

 

 

 

 

 

Each weight μ(Eα ) measures the μ-probability to visit successively Eα0 , Eα1 , . . . , Eαn1 at times 0, 1, . . . , n 1 through the geodesic flow. Roughly speaking, the entropy measures the exponential decay of these probabilities when n gets large. It

is easy to see that hKS (μ, P ) β if there exists C such that μ(Eα ) C eβn, for all n and all α [[1, K]]n.

Finally, the Kolmogorov–Sinai entropy of μ with respect to the action of the

geodesic flow is defined as

 

hKS (μ) = sup hKS (μ, P ),

(14)

P

 

the supremum running over all finite measurable partitions P . The choice to consider the time 1 of the geodesic flow in the definition (10) may seem arbitrary, but the entropy has a natural scaling property: the entropy of μ with respect to the flow (gat ) is |a|-times its entropy with respect to (gt ).

Assume μ is carried on the energy layer E . Due to the Anosov property of the geodesic flow on E , it is known that the supremum (14) is reached as soon as the diameter of the partition P E (that is, the maximum diameter of its elements Ek E ) is small enough. Furthermore, let us assume (without loss of generality) that the injectivity radius of M is larger than 1. Then, we may restrict our attention to partitions P obtained by lifting on E a partition of the manifold M, that is take

M

=

K

Mk and then Ek

=

T

 

2

 

k=1

 

 

 

 

 

Mk . In fact, if the diameter of Mk in M is of

order ε, then the diameter of the partition P

 

E in E is also of order ε. This

Entropy of Eigenfunctions

9

special choice of our partition is not crucial, but it simplifies certain aspects of the analysis.

The existence of the limit in (13), and the fact that it coincides with the infimum, follow from a standard subadditivity argument. It has a crucial consequence: if i ) is a sequence of (gt )-invariant probability measures on T M, weakly converging to a probability μ, and if μ does not charge the boundary of the partition P , we have

hKS (μ, P ) lim sup hKS i , P ).

i

 

In particular, assume that for i large enough, the following estimates hold:

 

n 1, α [[1, K]]n, μi (Eα ) Ci eβn,

(15)

with β independent of i. This implies for i large enough hKS i , P ) β, and this estimate goes to the limit to yield hKS (μ) β.

3.2 From Classical to Quantum Dynamical Entropy

Since our semiclassical measure μ is defined as a limit of Wigner distributions W , a naive idea would be to estimate from below the KS entropy of W and then take the limit 0. This idea cannot work directly, because the Wigner transforms W are neither positive, nor are they (gt )-invariant. Therefore, one cannot directly use the (formal) integrals W (Eα ) = Eα W (x, ξ ) dx dξ to compute the entropy of the semiclassical measure.

Instead, the method initiated by the first author in [2] is based on the following remarks. Each integral W (Eα ) can also be written as W (1lEα ) = T M W 1lEα ,

where 1lEα is the characteristic function on the set Eα , that is

 

1lEα = (1lEαn1 gn1) × · · · × (1lEα1 g) × 1lEα0 .

(16)

Remember we took Ek = T Mk , where the Mk form a partition of M.

From the definition of the Wigner distribution, this integral corresponds formally to the overlap ψ , Op (1lEα . Yet, the characteristic functions 1lEα have sharp discontinuities, so their quantizations cannot be incorporated in a nice pseudodifferential calculus. Besides, the set Eα is not compactly supported, and shrinks in the unstable direction when n = |α| → +∞, so that the operator Op (1lEα ) is very problematic.

We also note that an overlap of the form ψ , Op (1lEα is a hybrid expression: this is a quantum matrix element of an operator defined in terms of the classical evolution (16). From the point of view of quantum mechanics, it is more natural to consider, instead, the operator obtained as the product of Heisenberg-evolved quan-

tized functions, namely

 

(U n+1Pαn1 U n1)(U n+2Pαn2 U n2) · · · (U 1Pα1 U ) Pα0 .

(17)

10 Nalini Anantharaman, Herbert Koch and Stéphane Nonnenmacher

Here we used the shorthand notation Pk = 1lMk , k [[1, K]] (multiplication operators). To remedy the fact that the functions 1lMk are not smooth, which would prevent us from using a semiclassical calculus, we apply a convolution kernel to

smooth them, obtain functions 1lsm

 

C(M), and consider Pk

def

1lsm (we can do

 

K

Mk

 

 

 

=

Mk

 

 

 

this keeping the property

sm

= 1).

 

 

 

 

 

 

 

 

k=1

1lMk

def

U t A U t

 

 

 

 

 

In the following, we will use the notation A(t )

for the Heisen-

 

 

 

 

 

=

 

 

=

 

 

).

berg evolution of the operator A though the Schrödinger flow U t

exp(

it

 

 

 

 

 

 

 

 

 

 

2

The norm will denote either the Hilbert norm on L2(M), or the corresponding operator norm. The subsequent “purely quantum” norms were estimated in [2, Theorem 1.3.3]:

 

 

 

 

 

def

sm

 

 

 

Theorem 6 (The main estimate [2]). Set as above Pk =

. For every K > 0,

1lMk

there exists

 

 

uniformly for all

<

 

K , for all n K | log

 

|,

 

K > 0 such that, n

 

 

for all 0, . . . , αn1) [[1, K]]

,

 

 

 

 

 

 

 

Pαn1 (n 1) Pαn2 (n 2) · · · Pα0 ψ 2(2π )d/2 eΛ2 n(1 + O (ε))n. (18)

The exponent Λ is given by the “smallest expansion rate”:

Λ

= −

sup

log J u(ρ)dν(ρ)

=

 

d1

γ

i

 

 

inf

λ+(γ ).

 

 

ν M

 

 

 

i=1

The infimum on the right hand side runs over the set of closed orbits on E , and the λ+i denote the positive Lyapunov exponents along the orbit, that is the logarithms of the expanding eigenvalues of the Poincaré map, divided by the period of the orbit. The parameter ε > 0 is an upper bound on the diameters of the supports of the

functions 1lsm in M.

Mk

From now on we will call the product operator

Pα = Pαn1 (n 1) Pαn2 (n 2) · · · Pα0 , α [[1, K]]n.

(19)

To prove the above estimate, one actually controls the operator norm

 

Pα Op (χ ) 2(2π )d/2 eΛ2 n(1 + O (ε))n,

(20)

where χ Cc(E ε ) is an energy cutoff such that χ = 1 near E , supported inside a neighbourhood E ε = H 1([ 12 ε, 12 + ε]) of E .

In quantum mechanics, the matrix element ψ , Pα ψ looks like the “probability”, for a particle in the state ψ , to visit successively the phase space regions Eα0 , Eα1 , . . . , Eαn1 at times 0, 1, . . . , n 1 of the Schrödinger flow. Theorem 6 implies that this “probability” decays exponentially fast with n, with rate Λ2 , but this decay only starts around the time

n

 

def

d| log |

,

(21)

 

 

 

1

=

Λ

 

Entropy of Eigenfunctions

11

which is a kind of “Ehrenfest time” (see (34) for another definition of Ehrenfest time).

Yet, because the matrix elements ψ , Pα ψ are not real in general, they can hardly be used to define a “quantum measure”. Another possibility to define the probability for the particle to visit the sets Eαk at times k, is to take the squares of the norms appearing in (18):

Pα ψ 2 = Pαn1 (n 1) Pαn2 (n 2) · · · Pα0 ψ 2.

(22)

Now we require the smoothed characteristic functions 1lsm to satisfy the identity

 

 

 

Mi

 

 

K

2

 

 

 

 

sm

= 1 for any point x

M.

(23)

1lMk (x)

 

k=1

 

 

 

 

 

We denote by Psm the smooth partition of M made by the functions ((1lsm )2)K

.

 

 

 

Mk

k=1

 

The corresponding set of multiplication operators (Pk )kK=1

def

 

 

= Pq forms a “quantum

partition of unity”:

 

 

 

 

 

 

K

 

 

 

 

 

Pk2 = I dL2 .

 

(24)

 

k=1

 

 

 

For any n 1, we refine the quantum partition Pq into (Pα )|α|, as in (19). The weights (22) exactly add up to unity, so it makes sense to consider the entropy

def

η Pα ψ 2 .

(25)

hn(ψ , Pq ) =

α [[1,K]]n

3.2.1 Connection with Other Quantum Entropies

This entropy appears to be a particular case of the “general quantum entropies” de-

scribed by Słomczynski´

˙

and Zyczkowski [29], who already had in mind applications

to quantum chaos. In their terminology, a family of bounded operators π = k )Nk=1 on a Hilbert space H satisfying

N

 

πk πk = I dH

(26)

k=1

 

provides an “instrument” which, to each index k [[1, N ]], associates the following map on density matrices:

ρ I (k)ρ = πk ρ πk , a nonnegative operator with tr(I (k)ρ) 1.

From a unitary propagator U and its adjoint action U ρ = UρU 1, they propose to construct the refined instrument

12

 

 

 

Nalini Anantharaman, Herbert Koch and Stéphane Nonnenmacher

I (α)ρ def

I (α

n1

)

◦ · · · ◦

U

I (α

)

U

I (α

=

U

n+1 π

α

ρ π

U n1

,

=

 

 

 

1

 

 

0

 

 

 

 

α

 

α [[1, N ]]n,

where we used (19) to refine the operators πk into πα . We obtain the probability weights

tr(I (α)ρ)

=

tr

α

ρπ

α

α

[[

]]

n.

(27)

 

 

),

 

1, N

For any U -invariant density ρ, these weights provide an entropy

 

hn(ρ, I ) =

 

 

η

tr(I (α)ρ) .

 

(28)

 

 

α [[1,N ]]n

 

 

 

 

 

One easily checks that our quantum partition Pq = (Pk )Kk=1 satisfies (26), and that if one takes ρ = |ψ ψ | the weights tr(I (α)ρ) exactly correspond to our weightsPα ψ 2. Hence, the entropy (28) coincides with (25).

Around the same time, Alicki and Fannes [1] used the same quantum partition (26) (which they called “finite operational partitions of unity”) to define a different type of entropy, now called the “Alicki–Fannes entropy” (the definition extends to

 

 

 

 

 

n

 

n

 

1 they extend the weights (27) to

general C -dynamical systems). For each

n

 

“off-diagonal entries” to form a N

 

× N

 

 

density matrix ρn:

 

[

ρn

]α ,α =

tr

α

ρ π ),

 

 

α, α

[[

1, N

n.

(29)

 

 

α

 

 

 

 

 

 

]]

 

The AF entropy of the system (U , ρ) is then defined as follows: take the Von Neumann entropy of these density matrices, hAFn (ρ, π ) = tr η(ρn), then take

lim supn→∞ n1 hAFn (ρ, π ) and finally take the supremum over all possible finite operational partitions of unity π .

We mention that traces of the form (29) also appear in the “quantum histories” approach to quantum mechanics (see e.g. [17], and [29, Appendix D] for references).

3.2.2 Naive Treatment of the Entropy hn(ψ , Pq )

For fixed |α| > 0, the Egorov theorem shows that Pα ψ 2 converges to the clas-

sical weight μ((1lsm )2) when 0, so for fixed n > 0 the entropy hn(ψ , Pq )

Mα

converges to hn(μ, Psm), defined as in (11), the characteristic functions 1lMk being

replaced by their smoothed versions (1lsm )2. On the other hand, from the estimate

Mk

(20) the entropies hn(ψ , Pq ) satisfy, for small enough,

hn(ψ , Pq ) n Λ + O (ε) d| log | + O (1),

(30)

for any time n K | log |. For large times n K | log |, this provides a lower bound

1

hn(ψ , Pq )

Λ + O (ε)

d

+ O (1/| log |),

n

K

Entropy of Eigenfunctions

13

which looks very promising since K can be taken arbitrary large: we could be tempted to take the semiclassical limit, and deduce a lower bound hKS (μ) Λ.

Unfortunately, this does not work, because in the range {n > n1} where the estimate (30) is useful, the Egorov theorem breaks down, the weights (22) do not

approximate the classical weights μ((1lsm )2), and there is no relationship between

Mα

hn(ψ, Pq ) and the classical entropies hn(μ, Psm).

This breakdown of the quantum-classical correspondence around the Ehrenfest time is ubiquitous for chaotic dynamics. It has been observed before when studying the connection between the Alicki–Fannes entropy for the quantized torus automorphisms and the KS entropy of the classical dynamics [5]: the quantum entropies hAFn (ψ , Pq ) follow the classical hn(μ, Psm) until the Ehrenfest time (and there-

fore grow linearly with n), after which they “saturate”, to produce a vanishing entropy lim supn→∞ n1 hAFn (ψ , Pq ).

To prove Theorem 4, we will still use the estimates (20), but in a more subtle way, namely by referring to an entropic uncertainty principle.

3.3 Entropic Uncertainty Principle

The theorem below is an adaptation of the entropic uncertainty principle conjectured by Deutsch and Kraus [12, 21] and proved by Massen and Uffink [25]. These authors were investigating the theory of measurement in quantum mechanics. Roughly speaking, this result states that if a unitary matrix has “small” entries, then any of

its eigenvectors must have a “large” Shannon entropy.

 

 

 

 

H

 

 

N =

 

 

 

., . ) be a complex Hilbert space, and denote

 

ψ, ψ

the as-

Let ( ,

 

ψ

 

sociated norm. Consider a quantum partition of unity k )k=1 on H as in (26). Ifψ = 1, we define the entropy of ψ with respect to the partition π as in (25),

namely hπ (ψ ) =

N

2

). We extend this definition by introducing the

k=1

η( πk ψ

notion of pressure, associated to a family v = (vk )k=1,...,N of positive real numbers: the pressure is defined by

N

 

N

 

 

def

η πk ψ 2

πk ψ 2 log vk2.

 

pπ,v (ψ ) =

 

k=1

 

k=1

 

 

In Theorem 7, we actually need two partitions of unity k )N

and j )M

, and

 

 

k=1

j =1

 

two families of weights v = (vk )Nk=1, w = (wj )Mj =1, and consider the corresponding pressures pπ,v (ψ ), pτ,w (ψ ). Besides the appearance of the weights v, w, we bring another modification to the statement in [25] by introducing an auxiliary operator O .

Theorem 7 ([4, Theorem 6.5]). Let O be a bounded operator and U be an isometry on H .

Define c(v,w)

(U ) def

sup

wj vk

 

τj U π

O

 

, and V

=

maxk vk , W

=

maxj wj .

O

=

j,k

 

 

k

 

 

 

Then, for any 0, for any normalized ψ H satisfying

 

 

14

Nalini Anantharaman, Herbert Koch and Stéphane Nonnenmacher

 

k = 1, . . . , N , (I d O ) πk ψ ,

(31)

the pressures pτ,w (U ψ ), pπ,v (ψ ) satisfy

pτ,w (U ψ ) + pπ,v (ψ ) ≥ −2 log cO(v,w)(U ) + N V W .

Example 8. The original result of [25] corresponds to the case where H = CN , O = I d, = 0, N = M , vk = wj = 1, and the operators πk = τk are the orthogonal projectors on some orthonormal basis (ek )Nk=1 of H . In this case, the theorem asserts that

hπ (U ψ ) + hπ (ψ ) ≥ −2 log c(U )

where c(U ) = supj,k | ek , U ej | is the supremum of all matrix elements of U in the orthonormal basis (ek ). As a special case, one gets hπ (ψ ) ≥ − log c(U ) if ψ is

an eigenfunction of U .

3.4Applying the Entropic Uncertainty Principle to the Laplacian Eigenstates

In this section we explain how to use Theorem 7 in order to obtain nontrivial information on the quantum entropies (25) and then hKS (μ). For this we need to define the data to input in the theorem. Except the Hilbert space H = L2(M), all other data depend on the semiclassical parameter : the quantum partition π , the operator O , the positive real number , the weights (vj ), (wk ) and the unitary operator U .

As explained in Sect. 3.2, we partition M into M =

K

Mk , consider open

k=1

assume to have diameters

ε), and consider smoothed

sets Ωk Mk (which wesm

 

 

 

characteristic functions 1lMk supported respectively inside Ωk , and satisfying the

identity (23). The associated multiplication operators on H are form a quantum partition (Pk )Kk=1, which we had called Pq . To alleviate notations, we will drop the subscript q.

From (24), and using the unitarity of U , one realizes that for any n 1, the families of operators P n = (Pα )|α|=n and T n = (Pα )|α|=n (see (19)) make up two quantum partitions of unity as in (26), of cardinal Kn.

3.4.1 Sharp Energy Localization

In the estimate (20), we introduced an energy cutoff χ on a finite energy strip E ε , with χ 1 near E . This cutoff does not appear in the estimate (18), because, when applied to the eigenstate ψ , the operator Op (χ ) essentially acts like the identity.

The estimate (20) will actually not suffice to prove Theorem 4. We will need to optimize it by replacing χ in (20) with a “sharp” energy cutoff. For some fixed

Entropy of Eigenfunctions

 

 

 

 

 

15

(small) δ

 

(0, 1), we consider a smooth function χδ

 

 

(R

; [

]

), with

 

 

C

0, 1

 

χδ (t ) = 1 for |t | ≤ eδ/2 and χδ (t ) = 0 for |t | ≥ 1. Then, we rescale that function to obtain the following family of -dependent cutoffs near E :

 

 

 

(0, 1),

 

n

 

N,

 

ρ

 

(32)

 

 

 

 

 

 

 

T M,

χ (n);

def

 

e1+δ (H (ρ) 1/2) .

) = χδ

The cutoff χ (n) is supported in a tubular neighbourhood of E of width 2 1δ e. We will always assume that this width is 1/2 in the semiclassical limit, which is the case if we ensure that n Cδ | log | for some 0 < Cδ < (2δ)1 1. In spite of their singular behaviour, these cutoffs can be quantized into pseudodifferential operators Op(n)) described in [4] (the quantization uses a pseudodifferential calculus adapted to the energy layer E , drawn from [28]). The eigenstate ψ is indeed very localized near E , since it satisfies

Op(0)) 1 ψ = O ( ) ψ .

(33)

In the rest of the paper, we also fix a small δ > 0, and call “Ehrenfest time” the-dependent integer

n

 

( ) def

(1 δ )| log |

.

(34)

 

 

 

E

=

λmax

 

Notice the resemblance with the time n1 defined in (21). The significance of this time scale will be discussed in Sect. 3.4.5.

The following proposition states that the operators (Pα )|α|=nE , almost preserve the energy localization of ψ :

Proposition 9. For any L > 0, there exists L such that, for any L, the Laplacian eigenstate satisfies

 

α, α

n

E

,

Op(nE ))

I d P

 

ψ

L

 

ψ

 

.

(35)

| | =

 

 

 

 

α

 

 

 

 

 

We recognize here a condition of the form (31).

3.4.2 Applying Theorem 7: Step 1

We now precise some of the data we will use in the entropic uncertainty principle, Theorem 7. As opposed to the choice made in [4], we will use two different partitions π, τ .

The quantum partitions π and τ are given respectively by the families of oper-

 

ators π

=

P nE

=

(P

) α

|=

n

E

, τ

=

T nE

=

(Pα ) α

n . Notice that these

 

 

 

 

α |

 

 

 

| |=

E

 

partitions only differ by the ordering of the operators Pαi (i) inside the products.

 

In the semiclassical limit, these partitions have cardinality N = KnE K0

 

for some fixed K0 > 0.

 

 

 

 

 

 

 

 

 

 

The isometry will be the propagator at the Ehrenfest time, U = U nE .

16

Nalini Anantharaman, Herbert Koch and Stéphane Nonnenmacher

The auxiliary operator is given as O = Op(nE )), and the error = L, where L will be chosen very large (see Sect. 3.4.4).

The weights vα , wα will be selected in Sect. 3.4.4. They will be semiclassically

tempered, meaning that there exists K1 > 0 such that, for small enough, all vα , wα are contained in the interval [1, K1 ].

The entropy and pressures associated with a state ψ H are given by

h

(ψ )

=

η

 

P

ψ

 

2

,

 

 

 

 

 

 

(36)

π

 

|α|=nE

 

 

α

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

2 log v

 

 

 

v

 

 

2

 

 

 

 

α

 

α

 

(37)

pπ,

(ψ )

 

hπ (ψ )

 

 

 

 

 

 

P

 

ψ

 

 

.

 

 

 

 

 

 

|α|=nE

 

 

 

 

 

 

 

 

 

With respect to the second partition, we have

 

 

 

 

 

 

 

 

 

 

 

hτ (ψ ) =

η Pα ψ 2

,

 

 

 

 

 

 

(38)

 

 

 

|α|=nE

 

 

 

 

 

Pα ψ 2 log wα .

 

pτ,w (ψ ) = hτ (ψ ) 2

 

 

(39)

 

 

 

 

 

 

|α|=nE

 

 

 

 

 

 

 

 

 

We notice that the entropy hτ (ψ ) exactly corresponds to the formula (25), while hπ (ψ ) is built from the norms

Pα ψ 2 = Pα0 Pα1 (1) · · · Pαn1 (n 1) ψ 2.

If ψ is an eigenfunction of U , the above norm can be obtained from (22) by exchanging U with U 1, and replacing the sequence α = 0, . . . , αn1) by

def

α¯ = n1, . . . , α0). So the entropies hπ (ψ ) and hτ (ψ ) are mapped to one another through the time reversal U U 1.

With these data, we draw from Theorem 7 the following

Corollary 10. For > 0 small enough consider the data π , τ , U , O as defined above. Let

cv,w

(U ) def

max

wα vα

 

Pα U nE Pα Op(nE )) .

(40)

O

=

|α|=|α |=nE

 

 

 

Then for any normalized state φ satisfying (35),

 

pτ,w (U nE φ) + pπ,v (φ) ≥ −2 log

cOv,w (U ) + hLK02K1 .

 

From (35), we see that the above corollary applies to the eigenstate ψ if is small enough.

The reason to take the same value nE for the refined partitions P nE , T nE and the propagator U nE is the following: the products appearing in cOv,w (U ) can be rewritten (with U U ):

Entropy of Eigenfunctions

 

 

 

 

 

 

 

 

17

Pα U nE Pα

=

U nE +1Pα

U

· · ·

U Pα U Pαn

E

1 U

· · ·

U Pα0

=

U nE Pαα .

 

nE 1

 

0

 

 

 

Thus, the estimate (20) with n = 2nE already provides an upper bound for the norms appearing in (40)—the replacement of χ by the sharp cutoff χ (nE ) does not harm the estimate.

To prove Theorem 4, we actually need to improve the estimate (20), as was done in [4], see Theorem 11 below. This improvement is done at two levels: we will use the fact that the cutoffs χ (nE ) are sharper than χ , and also the fact that the expansion rate of the geodesic flow (which governs the upper bound in (20)) is not uniform, but depends on the sequence α.

Our choice for the weights vα , wα will then be guided by the α-dependent upper bounds given in Theorem 11. To state that theorem, we introduce some notations.

3.4.3 Coarse-Grained Unstable Jacobian

We recall that, for any energy λ > 0, the geodesic flow gt on the energy layer E (λ) = H 1(λ) T M is Anosov, so that the tangent space Tρ E (λ) at each ρ T M, H (ρ) > 0 splits into

Tρ E (λ) = Eu(ρ) Es (ρ) R XH (ρ)

where Eu (resp. Es ) is the unstable (resp. stable) subspace. The unstable Jacobian

J u(ρ) is defined by J u(ρ) = det(dg1 ) (the unstable spaces at ρ and g1ρ are

|Eu(g1ρ)

equipped with the induced Riemannian metric).

This Jacobian can be “discretized” as follows in the energy strip E ε

any pair of indices 0, α1) [[1, K]]2, we define

 

 

 

 

 

 

 

J u0

, α1) def

sup

J u(ρ)

:

ρ

 

T

Ωα

E ε , g1ρ

 

T

Ωα

1

}

1

=

{

 

 

 

0

 

 

 

E . For

(41)

if the set on the right hand side is not empty, and J1u0, α1) = eR otherwise, where R > 0 is a fixed large number. For any sequence of symbols α of length n, we define

def

, α1) · · · J1un2

, αn1).

(42)

Jnu(α) = J1u0

Although J u and J1u0, α1) are not necessarily everywhere smaller than unity, there exists C, λ+, λ> 0 such that, for any n > 0, for any α with |α| = n,

C

1 en(d1) λ+

J u(α)

C en(d1) λ.

(43)

 

 

n

 

 

One can take λ+ = λmax(1 + ε), where λmax is the maximal expanding rate in Theorem 4. We now give our central estimate, easy to draw from [4, Corollary 3.4].

Theorem 11. Fix small positive

constants ε, δ, δ and a

constant 0 < Cδ <

(2δ)1

K

 

=

k

Ωk of diameter

ε and an associated

 

1. Take an open cover

M

 

 

 

quantum partition P = (Pk )k=1. There exists 0 such that, for any 0, for any positive integer n Cδ | log |, and any pair of sequences α, α of length n,

= Pαn1

18 Nalini Anantharaman, Herbert Koch and Stéphane Nonnenmacher

 

 

Op(n))

=

 

 

U n P

 

Op(n))

C

d2

1

δ e

 

 

 

P

αα

P

α

α

J u(α) J u

).

 

 

 

 

 

 

 

 

 

n

n

 

 

 

(44)

The constant C only depends on the Riemannian manifold (M, g). If we take n = nE , this takes the form

 

 

 

 

 

α

 

nE

 

α

(nE )

d1+

nE

nE

 

 

 

 

 

 

P

U

 

P

 

C 2

),

(45)

 

 

 

 

 

 

 

Op(χ )

J u

(α) J u

 

=

 

+

 

max

 

 

 

 

 

 

 

 

 

 

where c

 

2

 

 

2λ1 .

 

 

 

 

 

 

 

 

 

 

The idea of proof in Theorem 11 is rather simple, although the technical implementation is cumbersome. We first show that for any normalized state ψ , the state Op(n)can be essentially decomposed into a superposition of d | supp χ (n)| normalized Lagrangian states, supported on Lagrangian manifolds transverse to the stable foliation. In fact the Lagrangian states we work with are truncated δ- functions, supported on Lagrangians of the form t gt Sz M. The action of the operator U nPαα U · · · U Pα0 on such Lagrangian states can be analyzed through WKB methods, and is simple to understand at the classical level: each application of the propagator U stretches the Lagrangian along the unstable direction (the rate of stretching being described by the local unstable Jacobian), whereas each operator Pk “projects” on a piece of Lagrangian of diameter ε. This iteration of stretching and cutting accounts for the exponential decay. The αα -independent factor on the right of (45) results from adding together the contributions of all the initial Lagrangian

states. Notice that this prefactor is smaller than in Theorem 6 due to the condition

Cδ < (2δ)1 1.

Remark 12. In [4] we used the same quantum partition P nE for π and τ in Theorem 7. As a result, we needed to estimate from above the norms Pα U nE Pα × Op(nE )) (see [4, Theorem. 2.6]). The proof of this estimate was much more involved than the one for (45), since it required to control long pieces of unstable manifolds. By using instead the two partitions P (n), T (n), we not only prove a more precise lower bound (6) on the KS entropy, but also short-circuit some fine dynamical analysis.

3.4.4 Applying Theorem 7: Step 2

There remains to choose the weights (vα , wα ) to use in Theorem 7. Our choice is guided by the following idea: in (40), the weights should balance the variations (with respect to α, α ) in the norms, such as to make all terms in (40) of the same order. Using the upper bounds (45), we end up with the following choice for all α of length nE :

v

α =

w

def

J u

(α)1/2.

From (43), there exists K1

 

α =

nE

 

> 0 such that, for small enough, all the weights

are contained in the interval [1, K1 ], as announced in Sect. 3.4.2. Using these weights, the estimate (45) implies the following bound on the coefficient (40):

Entropy of Eigenfunctions

 

19

v,w

(U ) C

d1+

< 0, cO

2 .

We can now apply Corollary 10 to the particular case of the eigenstates ψ . We

choose L such that L K0 2K1 > d1+, so from Corollary 10 we draw the

2

following

Proposition 13. Let (ψ ) 0 be our sequence of eigenstates (5). In the semiclassical limit, the pressures of ψ satisfy

p

n

(ψ )

+

p

n

E ,w

(ψ )

≥ −

(d 1 + cδ)λmax

n

E + O

(1).

(46)

 

 

P E ,v

 

 

T

 

(1

δ

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If M has constant curvature we have log Jαn ≤ −n(d 1max(1 O (ε)) for all α of length n, and the above lower bound can be written

hP nE (ψ ) + hT nE (ψ ) (d 1max 1 + O (ε, δ, δ ) nE .

As opposed to (30), the above inequality provides a nontrivial lower bound for the quantum entropies at the time nE , which is smaller than the time n1 of (21), and will allow to connect those entropies to the KS entropy of the semiclassical measure (see below).

3.4.5 Subadditivity Until the Ehrenfest Time

Even at the relatively small time nE , the connection between the quantum entropy h(ψ , P nE ) and the classical h(μ, PsmnE ) is not completely obvious: both are sums of a large number of terms ( K0 ). Before taking the limit 0, we will prove that a lower bound of the form (46) still holds if we replace nE | log | by some fixed no N, and P nE by the corresponding quantum partition P no . The link between quantum pressures at times nE and no is provided by the following subadditivity property, which is the semiclassical analogue of the classical subadditivity of pressures for invariant measures (see (12)).

Proposition 14 (Subadditivity). Let δ > 0. There is a function R(no, ), and a real number R > 0 independent of δ , such that, for any integer no 1,

lim sup |R(no, )| ≤ R

0

and with the following properties. For any small enough > 0, any integers no, n N with no + n nE ( ), for any ψ normalized eigenstate satisfying (5), the following inequality holds:

pP (no +n),v (ψ ) pP no ,v (ψ ) + pP n,v (ψ ) + R(no, ).

The same inequality is satisfied by the pressures pT n,w (ψ ).

20 Nalini Anantharaman, Herbert Koch and Stéphane Nonnenmacher

To prove this proposition, one uses a refined version of Egorov’s theorem [10] to show that the non-commutative dynamical system formed by (U t ) acting (through Heisenberg) on observables supported near E is (approximately) commutative on time intervals of length nE ( ). Precisely, we showed in [4] that, provided ε is small enough, for any a, b Cc(E ε ),

t [−nE ( ), nE ( )], [Op (a)(t ), Op (b)] = O ( ), 0,

and the implied constant is uniform with respect to t . Within that time interval, the operators Pαj (j ) appearing in the definition of the pressures commute up to small semiclassical errors. This almost commutativity explains why the quantum pressures pP n,v (ψ ) satisfy the same subadditivity property as the classical entropy (12), for times smaller than nE .

Thanks to this subadditivity, we may finish the proof of Theorem 4. Fixing no, using for each the Euclidean division nE ( ) = q( ) no + r( ) (with r( ) < no),

Proposition 14 implies that for small enough,

 

 

 

pP nE ,v (ψ )

pP no ,v (ψ )

+

pP r ,v (ψ )

+

R(no, )

 

 

 

 

 

 

.

 

nE

no

nE

no

The same inequality is satisfied by the pressures pT n,w (ψ ). Using (46) and the fact that pP r ,v (ψ ) stays uniformly bounded when 0, we find

pP no ,v (ψ ) + pT no ,w (ψ )

≥ −

2(d 1 + cδ)λmax

2R(no, )

no

 

2(1 δ )

no

 

 

 

+ Ono (1/nE ).

 

(47)

We are now dealing with quantum partitions P no , T no , for n0 N independent of . At this level the quantum and classical entropies are related through the (finite time) Egorov theorem, as we had noticed in Sect. 3.2.2. For any α of length no, the

weights

 

 

 

 

and

 

α

 

 

 

 

 

Mα

 

 

 

Pα ψ

 

2

 

P ψ

 

2

both converge to μ((1lsm )2), where we recall that

 

 

1lsm

=

(1lsm

gno 1)

× · · · ×

(1lsm

g)

×

1lsm .

 

 

Mα

 

 

Mαno 1

 

Mα1

 

Mα0

Thus, both entropies hP no (ψ ), hT no (ψ ) semiclassically converge to the classical entropy hno (μ, Psm). As a result, the left hand side of (47) converges to

 

hn

o

(μ, Psm)

2

 

μ (1lMsmα )2

log Jnuo (α).

 

2

 

 

 

+

 

 

(48)

 

 

no

 

no

|α|=no

 

 

 

 

 

 

 

 

 

 

 

Since μ is gt -invariant and J u

has the multiplicative structure (42), the second term

in (48) can be simplified:

no

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sm 2

 

u

(α) = (no 1)

sm

2

u

 

μ (1lMα )

 

log Jno

μ (1lM01) )

log J1

0, α1).

|α|=no

 

 

 

 

 

 

α01

 

 

 

1lsm
Mα

Entropy of Eigenfunctions

21

We have thus obtained the lower bound

 

 

 

 

 

 

 

 

 

hno (μ, Psm)

≥ −

no 1

 

μ (1lsm

)2

log J u

, α

)

 

 

 

 

 

no

 

no

 

α0

1

M01)

1 0

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(d 1 + cδ)λmax

 

R

.

 

 

(49)

 

 

 

 

 

 

 

 

 

 

2(1 δ )

 

no

 

 

 

At this stage we may forget about δ and δ . The above lower bound does not depend

on the derivatives of the functions 1lsm , so the same bound carries over if we replace

Mα

by the characteristic functions 1lMα . We can finally let no tend to +∞, then let the diameter ε tend to 0. The left hand side converges to hKS (μ) while, from the definition (41), the sum in the right hand side of (49) converges to the integral E log J u(ρ)dμ(ρ) as ε 0, which proves (6).

Acknowledgements N.A and S.N. were partially supported by the Agence Nationale de la Recherche, under the grant ANR-05-JCJC-0107-01. They benefited from numerous discussions with Y. Colin de Verdière and M. Zworski. S.N. is grateful to the Mathematical Department in Bonn for its hospitality in December 2006.

References

1.R. Alicki and M. Fannes, Defining quantum dynamical entropy. Lett. Math. Phys. 32, 75–82 (1994)

2.N. Anantharaman, Entropy and the localization of eigenfunctions. Ann. Math. 168(2), 435– 475 (2008)

3.N. Anantharaman and S. Nonnenmacher, Entropy of semiclassical measures of the Walshquantized baker’s map. Ann. Henri Poincaré 8, 37–74 (2007)

4.N. Anantharaman and S. Nonnenmacher, Half-delocalization of eigenfunctions of the Laplacian on an Anosov manifold. Ann. Inst. Fourier 57(7), 2465–2523 (2007)

5.F. Benatti, V. Cappellini, M. De Cock, M. Fannes, and D. Van Peteghem, Classical limit of quantum dynamical entropies. Rev. Math. Phys. 15, 1–29 (2003)

6.M.V. Berry, Regular and irregular semiclassical wave functions. J. Phys. A 10, 2083–2091 (1977)

7.O. Bohigas, Random matrix theory and chaotic dynamics. In: Giannoni, M.J., Voros, A., ZinnJustin, J. (eds.) Chaos et physique quantique, École d’été des Houches, Session LII, 1989. North-Holland, Amsterdam (1991)

8.J. Bourgain and E. Lindenstrauss, Entropy of quantum limits. Commun. Math. Phys. 233, 153–171 (2003)

9.A. Bouzouina and S. De Bièvre, Equipartition of the eigenfunctions of quantized ergodic maps on the torus. Commun. Math. Phys. 178, 83–105 (1996)

10.A. Bouzouina and D. Robert, Uniform semi-classical estimates for the propagation of quantum observables. Duke Math. J. 111, 223–252 (2002)

11.Y. Colin de Verdière, Ergodicité et fonctions propres du Laplacien. Commun. Math. Phys. 102, 497–502 (1985)

12.D. Deutsch, Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631–633 (1983)

13.M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit. London Mathematical Society Lecture Note Series, vol. 268, Cambridge University Press, Cambridge (1999)

22

Nalini Anantharaman, Herbert Koch and Stéphane Nonnenmacher

14.L.C. Evans and M. Zworski, Lectures on semiclassical analysis (version 0.2). Available at http://math.berkeley.edu/~zworski

15.F. Faure and S. Nonnenmacher, On the maximal scarring for quantum cat map eigenstates.

Commun. Math. Phys. 245, 201–214 (2004)

16.F. Faure, S. Nonnenmacher, and S. De Bièvre, Scarred eigenstates for quantum cat maps of minimal periods. Commun. Math. Phys. 239, 449–492 (2003)

17.R.B. Griffiths, Consistent Histories and the interpretation of quantum mechanics. J. Stat. Phys. 36, 219–272 (1984)

18.J.H. Hannay and M.V. Berry, Quantisation of linear maps on the torus—Fresnel diffraction by a periodic grating. Physica D 1, 267–290 (1980)

19.A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and Its Applications, vol. 54. Cambridge University Press, Cambridge (1995)

20.D. Kelmer, Arithmetic quantum unique ergodicity for symplectic linear maps of the multidimensional torus. Ann. Math. (2005, to appear)

21.K. Kraus, Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070–3075 (1987)

22.P. Kurlberg and Z. Rudnick, Hecke theory and equidistribution for the quantization of linear maps of the torus. Duke Math. J. 103, 47–77 (2000)

23.F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula. Ann. Math. (2) 122(3), 509–539 (1985)

24.E. Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity. Ann. Math. 163, 165–219 (2006)

25.H. Maassen and J.B.M. Uffink, Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103–1106 (1988)

26.Z. Rudnick and P. Sarnak, The behaviour of eigenstates of arithmetic hyperbolic manifolds.

Commun. Math. Phys. 161, 195–213 (1994)

27.A. Schnirelman, Ergodic properties of eigenfunctions. Usp. Math. Nauk 29, 181–182 (1974)

28.J. Sjöstrand and M. Zworski, Asymptotic distribution of resonances for convex obstacles. Acta

Math. 183, 191–253 (1999)

˙

29. W. Słomczynski´ and K. Zyczkowski, Quantum chaos: An entropy approach. J. Math. Phys. 35, 5674–5700 (1994)

30. A. Voros, Semiclassical ergodicity of quantum eigenstates in the Wigner representation. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Proceedings of the Volta Memorial Conference, Como, Italy, 1977. Lecture Notes Phys. vol. 93, pp. 326–333. Springer, Berlin (1979)

31. S.A. Wolpert, The modulus of continuity for Γ0(m)/H semi-classical limits. Commun. Math. Phys. 216, 313–323 (2001)

32. S. Zelditch, Uniform distribution of the eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55, 919–941 (1987)

Соседние файлы в папке Diss