Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Diss / 6 - 753p.pdf
Скачиваний:
65
Добавлен:
27.03.2016
Размер:
15.34 Mб
Скачать

New Algebraic Aspects of Perturbative and Non-perturbative Quantum Field Theory

57

References

1.P. Belkale and P. Brosnan, Matroids, motives, and a conjecture of Kontsevich. Duke Math. J. 116(1), 147–188 (2003). math.AG/0012198

2.C. Bergbauer and D. Kreimer, The Hopf algebra of rooted trees in Epstein–Glaser renormalization. Ann. Henri Poincaré 6, 343–367 (2004). hep-th/0403207

3.C. Bergbauer and D. Kreimer, Hopf algebras in renormalization theory: Locality and DysonSchwinger equations from Hochschild cohomology. IRMA Lect. Math. Theor. Phys. 10, 133– 164 (2006). hep-th/0506190

4.I. Bierenbaum, D. Kreimer and S. Weinzierl, The next-to-ladder approximation for DysonSchwinger equations. Phys. Lett. B 646, 129–133 (2007). hep-th/0612180

5.S. Bloch, Mixed Hodge structures and motives in physics. Talk at the conference on Motives and Algebraic Cycles, Fields Institute, March 2007

6.S. Bloch, Motives Associated to Graphs. Takagi Lectures, Kyoto, November 2006. Available online at http://www.math.uchicago.edu/~bloch/

7.S. Bloch, H. Esnault and D. Kreimer, On Motives Associated to Graph Polynomials. Commun. Math. Phys. 267, 181–225 (2006). math.AG/0510011

8.D. Broadhurst and D. Kreimer, Knots and numbers in Φ4 theory to 7 loops and beyond. Int.

J.Mod. Phys. C 6, 519–524 (1995). hep-ph/9504352

9.D. Broadhurst and D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops. Phys. Lett. B 393, 403–412 (1997). hep-th/9609128

10.D. Broadhurst and D. Kreimer, Renormalization automated by Hopf algebra. J. Symb. Comput. 27, 581 (1999). hep-th/9810087

11.D. Broadhurst and D. Kreimer, Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality. Nucl. Phys. B 600, 403–422 (2001). hep-th/0012146

12.D. Broadhurst, J. Gracey and D. Kreimer, Beyond the triangle and uniqueness relations: Non-zeta counterterms at large N from positive knots. Z. Phys. C 75, 559–574 (1997). hep-th/9607174

13.J. Collins, Renormalization. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1984)

14.A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative geometry. Commun. Math. Phys. 199, 203–242 (1998). hep-th/9808042

15.A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann– Hilbert problem I: The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210, 249–273 (2000). hep-th/9912092

16.A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem II: The beta-function, diffeomorphisms and the renormalization group. Commun. Math. Phys. 216, 215–241 (2001). hep-th/0003188

17.A. Connes and D. Kreimer, Insertion and elimination: The doubly infinite Lie algebra of Feynman graphs. Ann. Henri Poincaré 3, 411–433 (2002). hep-th/0201157

18.A. Connes and M. Marcolli, From physics to number theory via noncommutative geometry, part II: Renormalization, the Riemann-Hilbert correspondence, and motivic Galois theory. In:

Frontiers in Number Theory, Physics, and Geometry II, pp. 617–713. Springer, Berlin (2006). hep-th/0411114

19.A. Connes and M. Marcolli, Quantum fields and motives. J. Geom. Phys. 56(1), 55–85 (2006). hep-th/0504085

20.K. Ebrahimi-Fard, L. Guo and D. Kreimer, Integrable renormalization I: The ladder case.

J.Math. Phys. 45, 3758–3769 (2004). hep-th/0402095

21.K. Ebrahimi-Fard, L. Guo and D. Kreimer, Spitzer’s identity and the algebraic Birkhoff decomposition in pQFT. J. Phys. A 37, 11037–11052 (2004). hep-th/0407082

22.K. Ebrahimi-Fard, L. Guo and D. Kreimer, Integrable renormalization II: The general case. Ann. Henri Poincaré 6, 369–395 (2005). hep-th/0403118

23.L. Foissy, Les algèbres de Hopf des arbres enracinés I. Bull. Sci. Math. 126, 193–239 (2002)

58

Christoph Bergbauer and Dirk Kreimer

24.L. Foissy, Les algèbres de Hopf des arbres enracinés II. Bull. Sci. Math. 126, 249–288 (2002)

25.C. Itzykson and J.-B. Zuber, Quantum Field Theory. McGraw–Hill, New York (1980)

26.D. Kreimer, On the Hopf algebra structure of perturbative quantum field theories. Adv. Theor. Math. Phys. 2, 303–334 (1998). q-alg/9707029

27.D. Kreimer, On overlapping divergences. Commun. Math. Phys. 204, 669 (1999). hep-th/9810022

28.D. Kreimer, Factorization in quantum field theory: An exercise in Hopf algebras and local singularities (2003). Contributed to Les Houches School of Physics: Frontiers in Number Theory, Physics and Geometry, Les Houches, France, 9–21 Mar. 2003. hep-th/0306020

29.D. Kreimer, What is the trouble with Dyson-Schwinger equations? Nucl. Phys. Proc. Suppl. 135, 238–242 (2004). hep-th/0407016

30.D. Kreimer, The residues of quantum field theory: Numbers we should know. In: Consani, C., Marcolli, M., (eds.) Noncommutative Geometry and Number Theory, Bonn, 2003, pp. 187–

204.Vieweg (2006). hep-th/0404090

31.D. Kreimer, Anatomy of a gauge theory. Ann. Phys. 321, 2757–2781 (2006)

32.D. Kreimer, Dyson Schwinger equations: From Hopf algebras to number theory. In: Binder, I., Kreimer, D. (eds.) Universality and Renormalization. Fields Inst. Comm., vol. 50, pp. 225–

248.AMS, Providence (2007). hep-th/0609004

33.D. Kreimer, Étude for linear Dyson-Schwinger equations. IHES Preprint P/06/23

34.D. Kreimer and R. Delbourgo, Using the Hopf algebra structure of QFT in calculations. Phys. Rev. D 60, 105025 (1999). hep-th/9903249

35.D. Kreimer and K. Yeats, An etude in non-linear Dyson-Schwinger equations. Nucl. Phys. Proc. Suppl. 160, 116–121 (2006). hep-th/0605096

36.D. Kreimer and K. Yeats, Recursion and growth estimates in renormalizable quantum field theory. hep-th/0612179

37.I. Mencattini and D. Kreimer, The structure of the Ladder Insertion-Elimination Lie algebra. Commun. Math. Phys. 259, 413–432 (2005). math-ph/0408053

38.W. van Suijlekom, The Hopf algebra of Feynman graphs in QED. Lett. Math. Phys. 77, 265–

281(2006). hep-th/0602126

39.W. van Suijlekom, Renormalization of gauge fields: A Hopf algebra approach 2006. hepth/0610137

40.D. Volovich and I. and Prokhorenko, Renormalizations in quantum electrodynamics, and Hopf algebras. Tr. Mat. Inst. Steklova 245, 288–295 (2004) [Izbr. Vopr. p-adich. Mat. Fiz. i Anal.]

Exact Solution of the Six-Vertex Model with Domain Wall Boundary Conditions

Pavel M. Bleher

Abstract The six-vertex model, or the square ice model, with domain wall boundary conditions (DWBC) has been introduced and solved for finite N by Korepin and Izergin. The solution is based on the Yang-Baxter equations and it represents the free energy in terms of an N × N Hankel determinant. Paul Zinn-Justin observed that the Izergin-Korepin formula can be re-expressed in terms of the partition function of a random matrix model with a nonpolynomial interaction. We use this observation to obtain the large N asymptotics of the six-vertex model with DWBC in the disordered phase and ferroelectric phases, and also on the critical line between these two phases. The solution is based on the Riemann-Hilbert approach.

1 Six-Vertex Model

The six-vertex model, or the model of two-dimensional ice, is stated on a square lattice with arrows on edges. The arrows obey the rule that at every vertex there are two arrows pointing in and two arrows pointing out. Such rule is sometimes called the ice-rule. There are only six possible configurations of arrows at each vertex, hence the name of the model, see Fig. 1.

We will consider the domain wall boundary conditions (DWBC), in which the arrows on the upper and lower boundaries point in the square, and the ones on the left and right boundaries point out. One possible configuration with DWBC on the 4 × 4 lattice is shown on Fig. 2.

The name of the square ice comes from the two-dimensional arrangement of water molecules, H2O, with oxygen atoms at the vertices of the lattice and one

Pavel M. Bleher

Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, 402 N. Blackford St., Indianapolis, IN 46202, USA, e-mail: bleher@math.iupui.edu

The author is supported in part by the National Science Foundation (NSF) Grant DMS0652005.

V. Sidoraviciusˇ (ed.), New Trends in Mathematical Physics,

59

© Springer Science + Business Media B.V. 2009

 

60

 

 

 

 

 

 

Pavel M. Bleher

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 The six arrow configurations allowed at a vertex

Fig. 2 An example of 4 × 4 configuration

hydrogen atom between each pair of adjacent oxygen atoms. We place an arrow in the direction from a hydrogen atom toward an oxygen atom if there is a bond between them. Thus, as we already noticed before, there are two in-bound and two out-bound arrows at each vertex.

For each possible vertex state we assign a weight wi , i = 1, . . . , 6, and define, as usual, the partition function, as a sum over all possible arrow configurations of the product of the vertex weights,

Exact Solution of the Six-Vertex Model

61

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 The corresponding ice model

 

 

 

6

ZN =

w(σ ),

w(σ ) =

wσ (x) = wiNi (σ ), (1)

arrow configurations σ

 

x VN

i=1

where VN is the N × N set of vertices, σ (x) {1, . . . , 6} is the vertex configuration of σ at vertex x, according to Fig. 1, and Ni (σ ) is the number of vertices of type i in the configuration σ . The sum is taken over all possible configurations obeying the given boundary condition. The Gibbs measure is defined then as

μN (σ ) =

w(σ )

(2)

ZN .

Our main goal is to obtain the large N asymptotics of the partition function ZN . In general, the six-vertex model has six parameters: the weights wi . However, by

using some conservation laws we can reduce these to only two parameters. Namely,

first we reduce to the case

 

 

 

 

 

 

 

 

 

 

 

w1 = w2 a,

w3 = w4 b,

 

 

w5 = w6 c,

(3)

and then, by using the identity,

 

 

 

 

 

 

 

 

 

 

 

ZN (a, a, b, b, c, c) = cN

2

a

 

a b b

 

ZN

 

,

 

,

 

,

 

, 1, 1 ,

(4)

c

c

c

c

to the two parameters, a and

b . For details on how we make this reduction, see,

c

c

 

 

 

 

 

 

 

 

 

 

e.g., the works [1] of Allison and Reshetikhin, [11] of Ferrari and Spohn, and [7] of Bleher and Liechty.

62

Pavel M. Bleher

Fig. 4 The phase diagram of the model, where F, AF and D mark ferroelectric, antiferroelectric, and disordered phases, respectively. The circular arc corresponds to the so-called “free fermion” line, where = 0, and the three dots correspond to 1-, 2-, and 3-enumeration of alternating sign matrices

2 Phase Diagram of the Six-Vertex Model

Introduce the parameter

a2

+ b2 c2

 

 

=

.

(5)

 

 

 

2ab

 

The phase diagram of the six-vertex model consists of the following three regions: the ferroelectric phase region, > 1; the anti-ferroelectric phase region, < 1; and, the disordered phase region, 1 < < 1, see, e.g., [21]. In these three regions we parameterize the weights in the standard way: in the ferroelectric phase region,

a = sinh(t γ ),

b = sinh(t + γ ),

c = sinh(2|γ |),

0 < |γ | < t,

(6)

in the anti-ferroelectric phase region,

 

 

 

a = sinht ),

b = sinh+ t ),

c = sinh(2γ ),

|t | < γ ,

(7)

and in the disordered phase region,

 

 

 

a = sint ),

b = sin+ t ),

c = sin(2γ ),

|t | < γ .

(8)

The phase diagram of the model is shown on Fig. 4.

Here we will discuss the disordered and ferroelectric phase regions, and we will use parameterizations (8) and (6).

The phase diagram and the Bethe-Ansatz solution of the six-vertex model for periodic and anti-periodic boundary conditions are thoroughly discussed in the works of Lieb [1720], Lieb, Wu [21], Sutherland [25], Baxter [3], Batchelor, Baxter,

Exact Solution of the Six-Vertex Model

63

O’Rourke, Yung [2]. See also the work of Wu, Lin [27], in which the Pfaffian solution for the six-vertex model with periodic boundary conditions is obtained on the free fermion line, = 0.

3 Izergin-Korepin Determinantal Formula

The six-vertex model with DWBC was introduced by Korepin in [14], who derived an important recursion relation for the partition function of the model. This lead to a beautiful determinantal formula of Izergin and Korepin [12], for the partition function of the six-vertex model with DWBC. A detailed proof of this formula and its generalizations are given in the paper of Izergin, Coker, and Korepin [13]. When the weights are parameterized according to (8), the formula of Izergin is

Z

N =

[sin+ t ) sint )]N 2

 

τ

N

,

(9)

 

 

 

 

 

 

 

(

N 1 n )2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=0

!

 

 

 

 

 

 

 

 

 

where τN is the Hankel determinant,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

τN = det

 

di+k2φ

 

 

 

 

N ,

 

 

(10)

 

 

dt i+k2

1

i,k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and

 

 

 

 

 

sin(2γ )

 

 

 

 

 

 

 

 

 

 

φ (t ) =

 

 

 

 

 

 

 

 

.

 

 

(11)

 

 

 

 

 

 

 

 

 

 

sin

+

t ) sin

t )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An elegant derivation of the Izergin-Korepin determinantal formula from the YangBaxter equations is given in the papers of Korepin and Zinn-Justin [15] and Kuperberg [16].

One of the applications of the determinantal formula is that it implies that the partition function τN solves the Toda equation,

τ

τ

 

2

=

 

 

 

 

 

1, ( )

=

 

(12)

τ

τ

N +1

τ

N 1

, N

 

 

,

 

 

N N

 

N

 

 

 

 

∂t

 

cf. [24]. This was used by Korepin and Zinn-Justin [15] to derive the free energy of the six-vertex model with DWBC, assuming some Ansatz on the behavior of subdominant terms in the large N asymptotics of the free energy.

4The Six-Vertex Model with DWBC and a Random Matrix Model

Another application of the Izergin-Korepin determinantal formula is that τN can be expressed in terms of a partition function of a random matrix model. The relation to

64

Pavel M. Bleher

the random matrix model was obtained and used by Zinn-Justin [29]. This relation will be very important for us. It can be derived as follows. For the evaluation of the Hankel determinant, it is convenient to use the integral representation of φ (t ), namely, to write it in the form of the Laplace transform,

 

 

 

 

φ (t ) =

 

 

et λm(λ)dλ,

 

(13)

 

 

 

 

 

 

 

 

−∞

 

 

 

 

 

 

 

 

where

 

 

 

 

 

 

 

sinh λ2 2γ )

 

 

 

 

 

 

m(λ) =

 

 

(14)

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

sinh λ2 π

 

 

Then

 

 

 

di φ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

i

 

t λ

 

 

 

 

(15)

 

 

 

 

 

 

 

 

λ

e

 

m(λ)dλ,

 

 

 

 

 

dt i

 

 

 

 

 

 

 

 

 

 

 

 

−∞

 

 

 

 

 

 

 

 

and by substituting this into the Hankel determinant, (10), we obtain that

 

 

 

N

 

 

 

 

 

 

 

deti+k2)

 

 

τ

N =

[

et λi m(λ

)dλ

i ]

 

 

 

 

 

i

 

 

 

 

 

 

i

 

1i,kN

 

 

 

 

i=1

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

N

 

 

 

 

 

 

 

detk1)

 

λi1.

 

 

=

[

et λi m(λ

)dλ

i ]

1i,kN

(16)

 

 

 

i

 

 

 

 

 

 

i

i

 

 

 

i=1

 

 

 

 

 

 

 

 

 

 

 

 

i=1

 

 

Consider any permutation σ SN of variables λi . From the last equation we have that

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

N

 

τ

N =

[

et λi m(λ

)dλ

( 1)σ detk1)

1i,kN

λi1 .

(17)

 

 

 

 

 

 

i

 

i ] −

i

σ (i)

 

 

 

i=1

 

 

 

 

 

 

 

 

 

 

 

 

i=1

 

By summing over σ SN , we obtain that

 

 

 

 

 

 

 

 

 

 

 

1

 

 

N

 

 

 

 

 

 

 

 

τN =

 

 

 

[et λi m(λi )dλi ]Δ(λ)2,

 

 

(18)

 

 

 

 

 

 

 

 

 

 

 

N

!

 

 

 

 

 

 

 

 

 

 

 

 

i=1

 

 

 

 

 

 

where Δ(λ) is the Vandermonde determinant,

 

 

 

 

 

 

 

 

Δ(λ)

=

detk1)

k

λ

).

 

(19)

 

 

 

 

 

 

 

 

i

1i,kN =

 

i

 

 

 

i<k

Equation (18) expresses τN in terms of a matrix model integral. Namely, if m(x) = eV (x), then

 

 

N 1 n

!

 

 

τ

N =

n=0

dMeTr[t MV (M)],

(20)

 

π N (N 1)/2

 

 

where the integration is over the space of model integral can be solved, furthermore,

N × N Hermitian matrices. The matrix in terms of orthogonal polynomials.

Exact Solution of the Six-Vertex Model

65

Introduce monic polynomials P (x)

=

xn

+ · · ·

orthogonal on the line with

respect to the weight w(x) = e

t x

n

 

 

 

 

 

 

 

 

 

 

 

m(x), so that

 

 

 

 

 

 

 

 

 

 

Pn(x)Pm(x)et x m(x)dx = hnδnm.

 

 

(21)

 

−∞

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then it follows from (18) that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

τN =

N 1

 

 

 

 

 

 

 

 

(22)

 

 

 

 

 

 

 

 

hn.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=0

 

 

 

 

 

 

 

 

 

The orthogonal polynomials satisfy the three term recurrence relation,

 

xPn(x) = Pn+1(x) + QnPn(x) + RnPn1(x),

(23)

where Rn can be found as

 

 

 

 

 

 

 

hn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rn =

 

,

 

 

 

 

 

 

(24)

see, e.g., [26]. This gives that

 

 

 

 

hn1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

hn = h0

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rj ,

 

 

 

 

 

(25)

 

 

 

 

 

 

 

 

 

j =1

 

 

 

 

 

 

 

 

 

where

 

 

 

 

 

 

 

 

 

 

 

sin(2γ )

 

 

 

 

h0 =

t x

 

 

 

 

=

 

 

 

 

 

 

(26)

e

 

 

m(x)dx

 

 

 

 

 

.

 

 

sin

+

t ) sin

t )

 

−∞

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By substituting (25) into (22), we obtain that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 1

 

 

 

 

 

 

 

 

 

 

 

 

τ

N =

hN

 

 

RN n.

 

 

 

 

(27)

 

 

 

 

 

0

 

 

 

 

n

 

 

 

 

 

 

 

n=1

5 Asymptotic Formula for the Recurrence Coefficients

We prove the following asymptotics of the recurrence coefficients Rn.

Theorem 1 (See [4]). As n → ∞,

Rn =

n2

cj nκj + cn2 + O(n2ε ) , ε > 0, (28)

 

R + cos(nω)

γ 2

 

 

 

j : κj 2

where the sum is finite and it goes over j = 1, 2, . . . such that κj 2,

66

R =

and

where

and

where

Pavel M. Bleher

π

2

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2j

 

 

 

, ζ

 

 

;

ω

= π(1 + ζ );

 

κj = 1 +

 

 

, (29)

 

 

 

 

 

π

 

1

2 cos

π ζ

γ

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2γ

 

 

 

 

 

 

cj =

 

2γ eϕ(yj )

(1)j

sin

πj

 

 

 

(30)

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

cos

π ζ

1

2γ

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

yj =

 

 

 

πj

 

,

 

 

 

 

 

 

 

(31)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2γ

 

 

 

 

 

 

 

 

 

 

ϕ(y) = −

2y

 

ln

 

 

 

2π cos

π ζ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

+

2

 

 

 

 

 

arg+ iy)f (μ)dμ + y ln y y ,

 

 

 

(32)

 

π

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

π

 

 

 

 

π

 

 

 

 

 

 

π

 

 

 

f (μ) =

 

coth μ

 

 

 

 

1

coth μ

 

 

 

 

1 sgn μ.

(33)

2γ

2γ

 

2γ

 

2γ

Also,

 

 

 

 

 

 

π γ 2

 

 

 

π 2

 

 

 

 

 

c =

 

 

 

 

 

 

 

.

(34)

 

 

6

2γ ) cos

2 π ζ

 

 

 

 

2 π ζ

 

 

 

2

 

48 cos

2

 

 

The error term in (28) is uniform on any compact subset of the set

 

 

 

(t, γ ) :

 

|t | < γ , 0 < γ <

π

 

 

(35)

 

 

 

 

 

.

 

 

 

 

 

2

 

 

Remark. The method of the proof allows an extension of formula (28) to an asymptotic series in negative powers of n.

Denote

FN =

1

ln

 

τN

 

.

N 2

(

N 1 n )2

 

 

 

 

n=0

!

 

From Theorem 1 we derive the following result.

Theorem 2. As N → ∞,

FN = F + O(N 1),

 

 

where

 

1 R

 

π

 

 

F =

 

= ln

 

 

 

 

ln

 

 

 

.

 

2

γ 2

2γ cos

π ζ

 

 

 

 

 

 

 

2

 

(36)

(37)

(38)

This coincides with the formula of work [29], obtained in the saddle-point approximation. Earlier it was derived in work [15], from some Ansatz for the free

Exact Solution of the Six-Vertex Model

67

energy asymptotics. For the partition function ZN in (9) we obtain from Theorem 2 the formula,

1

ln ZN

=

f

+

O(N 1)

f

=

ln

π [cos(2t ) cos(2γ )]

. (39)

N 2

4γ cos 2πγt

 

 

 

 

 

 

Let us compare this formula and asymptotics (28) with known exact results.

6 Previous Exact Results

The free fermion line, γ = π4 , |t | < π4 . In this case the exact result is

 

ZN = 1,

(40)

see, e.g., [9], which implies f = 0. This agrees with formula (39), which also gives f = 0 when γ = π4 . Moreover, the orthogonal polynomials in this case are the Meixner-Pollaczek polynomials, for which

Rn =

4n2

=

n2R

(41)

 

γ 2 ,

cos2 2t

cf. [9]. Thus, formula (28) is exact on the free fermion line, with no error term. This agrees with Theorem 1, because from (30), (34), cj = c = 0 when γ = π4 .

The ASM (ice) point, γ = π3 , t = 0. In this case we obtain from (8) that

 

 

 

 

 

 

 

 

a = b = c =

3

,

(42)

 

2

hence

 

N 2

 

 

 

 

 

 

 

 

 

 

ZN =

3

A(N ),

(43)

 

 

 

2

 

where A(N ) is the number of configurations in the six-vertex model with DWBC. There is a one-to-one correspondence between the set of configurations in the sixvertex model with DWBC and the set of N × N alternating sign matrices. By definition, an alternating sign matrix (ASM) is a matrix with the following properties:

All entries of the matrix are 1, 0, 1;

If we look at the sequence of (1)’s and 1’s, they are alternating along any row and any column;

The sum of entries is equal to 1 along any row and any column.

The above correspondence is established as follows: given a configuration of arrows on edges, we assign (1) to any vertex of type (1) on Fig. 1, 1 to any vertex of type (2), and 0 to any vertex of other types. Then the configuration on the vertices gives

68

Pavel M. Bleher

rise to an ASM, and this correspondence is one-to-one. For instance, Fig. 5 shows the ASM corresponding to the configuration of arrows on Fig. 2.

0

1

0

0

0

0

1

0

1

1

0

1

0

1

0

0

Fig. 5 ASM for the configuration of Fig. 2

For the number of ASMs there is an exact formula:

A(N )

N 1

(3n + 1)!n!

 

.

(44)

n 0

 

!

 

!

+

1)

 

 

 

=

(2n) (2n

 

 

 

 

 

=

 

 

 

 

 

 

This formula was conjectured in [22], [23], and proved by Zeilberger [28] by combinatorial arguments. Another proof was given by Kuperberg [16], who used formula (9). The relation to classical orthogonal polynomials was found by Colomo and Pronko [9], who used this relation to give a new proof of the ASM conjecture. The orthogonal polynomials in this case are the continuous Hahn polynomials and from [9] we find that

 

 

R

 

 

 

 

 

n2(9n2 1)

 

 

 

9n2

 

5

 

 

O(n2).

(45)

 

n

=

 

 

 

 

 

 

 

 

 

 

= 4

 

+ 16

 

+

 

 

 

 

 

 

 

 

4n2 1

 

 

 

 

 

 

 

 

Formula (28) gives

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rn =

9n2

 

π 2

+

 

5π 2

 

+ O(n2ε )

,

(46)

 

 

 

 

π 2

 

4

 

 

 

144n2

 

which agrees with (45). From (44) we find that as N → ∞,

 

 

 

 

 

 

 

 

3

 

 

 

N 2

 

 

 

 

 

 

 

 

 

 

 

115

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

5

 

 

 

 

 

 

 

 

A(N ) = C

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

1

 

 

+ O(N 3) ,

(47)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36

 

 

 

 

4

 

 

 

 

 

 

15552N 2

where C > 0 is a constant, so that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ZN = C

9 N 2

N

5

 

 

 

 

 

1

 

 

 

 

 

115

 

 

+ O(N 3) ,

N → ∞.

(48)

 

 

 

 

36

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

15552N 2

 

Formula (39) gives f

=

ln

9

,

which agrees with the last formula.

 

 

 

 

 

 

 

 

8

 

 

π

= 0. Here the exact result is

 

The x = 3 ASM point, γ =

6 , t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3N /2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ZN =

 

 

 

A(N ; 3),

 

 

 

 

(49)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2N 2

 

 

 

 

Exact Solution of the Six-Vertex Model

 

 

 

 

 

 

 

69

where

 

 

 

 

 

3m(m+1) m

 

(3k1)!

2

 

A(2m

+

1

;

3)

=

[

,

 

 

 

k=1

(m+k)! ]

(50)

A(2m

+

2

;

3)

=

3m (3m+2)!m! A(2m

+

 

;

1

3).

 

 

 

[(2m+1)!]2

 

 

 

 

In this case A(N ; 3) counts the number of alternating sign matrices with weight 3k , where k is the number of (1) entries. Formula (50) for A(N ; 3) was conjectured in [22], [23] and proved in [16]. The relation to classical orthogonal polynomials was again found by Colomo and Pronko [9], who used it to give a new proof of formula (50) for the 3-enumeration of ASMs. The orthogonal polynomials in this case are expressed in terms of the continuous dual Hahn polynomials and from [9] we find that

R2m = 36m2, R2m+1 = 4(3m + 1)(3m + 2).

(51)

In this case the subdominant term in the asymptotics of Rn exhibits a period 2 oscillation. Namely, we obtain from the last formula that

R

n =

9n2

+

 

1 + (1)n

.

(52)

2

 

 

 

 

This perfectly fits to the frequency value ω = π for ζ

= 0 in (29). Moreover,

formula (28) gives

 

 

 

 

 

 

 

Rn

 

 

36n2

 

 

π 2

+

(1)nc1

 

 

π 2

 

O(n2ε ) ,

=

 

π 2

 

 

4

n2

72n2 +

 

 

 

 

 

 

 

 

 

which agrees with (52) and it provides with the value of c1 =

π 2

.

 

72

 

From (50) we find, that as m → ∞,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

4m2

 

 

1

 

 

 

77

 

 

 

 

A(2m 3)

=

C3

 

 

 

3m(2m)

 

 

1

+

7776m2 +

O(N

3) ,

 

 

 

18

2

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

(53)

(54)

where C3 > 0 is a constant, and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

(2m+1)2

2m 1

 

 

 

1

 

 

131

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A(2m + 1; 3) = C3

 

 

 

 

 

 

 

 

3

2

(2m + 1) 18 1 +

 

 

+ O(m) .

 

 

 

2

 

 

 

7776m2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(55)

so that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A(N

 

3)

 

C

 

3

 

 

 

N 2

 

N 18

1

 

 

 

 

 

 

 

N

 

 

O(N 3)

,

(56)

 

 

 

 

 

 

 

32

104 27(1)

 

 

 

 

;

 

= 3

 

 

 

 

 

 

 

N

1

 

 

+

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

1944N 2

 

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z

 

C

3

 

N 2

N 18

1

 

104 27(1)

N

O(N

3) , N

 

.

(57)

 

N =

 

 

 

 

 

 

 

 

 

1

 

+

 

 

 

 

 

 

+

 

 

 

 

 

 

 

→ ∞

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

1944N 2

 

 

 

 

 

 

 

 

 

70

 

 

 

 

Pavel M. Bleher

Formula (39) gives f = ln 43 , which agrees with the last formula.

 

We have the identity,

 

 

 

 

 

2FN

=

RN

,

(58)

 

∂t 2

N 2

see, e.g., [5], which is equivalent to the Toda equation (12). By using identity (58), we obtain from Theorem 1 the following asymptotics.

Theorem 3. As N → ∞,

 

 

 

 

 

 

 

 

 

2(FN F )

=

 

1

 

cos(N ω)

c

N

κj

+

cN 2

+

O(N 2ε ). (59)

 

∂t 2

γ 2

 

 

j

 

 

 

 

 

 

 

 

 

 

 

j : κj 2

 

 

 

 

 

 

This gives a quasiperiodic asymptotics, as N → ∞, of the second derivative of the subdominant terms.

7 Zinn-Justin’s Conjecture

Paul Zinn-Justin conjectured in [29] that

 

 

 

 

 

ZN CN κ eN 2f ,

(60)

i.e.,

 

 

 

 

 

Nlim

ZN

= 1.

(61)

 

κ

e

N 2f

→∞ CN

 

 

 

 

Formulae (40), (48), and (57) confirm this conjecture, with the value of κ given as

0, γ = π4 , |t | < π4 ;

 

κ = −

5

,

γ = π3 ,

t = 0;

(62)

36

 

1

,

 

γ = π6 ,

t = 0.

 

18

 

 

Bogoliubov, Kitaev and Zvonarev obtained in [8] the asymptotics of ZN on the line ac + bc = 1, separating the disordered and antiferroelectric phases. This corresponds to the value γ = 0. They found that in this case formula (60) holds with κ = 121 .

With the help of Theorem 1 we prove the following result.

Theorem 4. We have that

 

 

 

 

 

 

 

ZN = CN κ eN 2f

1 + O(N ε ) , ε > 0,

(63)

where

1

 

2γ 2

 

 

 

κ =

 

,

(64)

12

3π(π

2γ )

 

 

 

 

 

 

 

and C > 0 is a constant.

Exact Solution of the Six-Vertex Model

71

This proves the conjecture of Zinn-Justin, and it gives the exact value of the exponent κ. Let us remark, that the presence of the power-like factor N κ in the asymptotic expansion of ZN in (63) is rather unusual from the point of view of random matrix models. In the one-cut case the usual large N asymptotics of ZN in a noncritical random matrix model is the so called “topological expansion”, which gives ZN as an asymptotic series in powers of 1/N 2. For a rigorous proof of the “topological expansion” see the work of Ercolani and McLaughlin [10] (see also [5]).

8 Large N Asymptotics of ZN in the Ferroelectric Phase

Recently Bleher and Liechty [7], [6] obtained the large N asymptotics of ZN in the ferroelectric phase, > 1, and also on the critical line between the ferroelectric and disordered phases, = 1. In the ferroelectric phase we use parameterization (6) for a, b and c. The large N asymptotics of ZN in the ferroelectric phase is given by the following theorem:

Theorem 5. In the ferroelectric phase with t > γ > 0, for any ε > 0, as N → ∞,

ZN = CGN F N 2 1 + O eN 1ε ,

(65)

where C = 1 e4γ , G = eγ t , and F = sinh(t + γ ).

On the critical line between the ferroelectric and disordered phases we use the parameterization b = a + 1, c = 1. The main result here is the following asymptotic formula for ZN :

Theorem 6. As n → ∞,

 

 

 

CN κ G

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F N 2

 

 

 

 

1/2) ,

 

Z

N

=

N

1

O(N

(66)

 

 

 

 

[ +

 

 

 

 

 

]

 

where C > 0,

 

1

 

 

 

 

 

3

 

 

 

 

 

κ =

, G = exp

ζ

 

 

a

,

(67)

 

 

 

 

 

 

 

4

2

 

π

and

 

 

 

 

 

F = b.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(68)

References

1.D. Allison and N. Reshetikhin, Numerical study of the 6-vertex model with domain wall boundary conditions. Ann. Inst. Fourier (Grenoble) 55, 1847–1869 (2005)

2.M.T. Batchelor, R.J. Baxter, M.J. O’Rourke, and C.M. Yung, Exact solution and interfacial tension of the six-vertex model with anti-periodic boundary conditions. J. Phys. A 28, 2759– 2770 (1995)

72

Pavel M. Bleher

3.R. Baxter, Exactly Solved Models in Statistical Mechanics. Academic Press, San Diego (1982)

4.P.M. Bleher and V.V. Fokin, Exact solution of the six-vertex model with domain wall boundary conditions. Disordered phase. Commun. Math. Phys. 268, 223–284 (2006)

5.P. Bleher and A. Its, Asymptotics of the partition function of a random matrix model. Ann. Inst. Fourier 55, 1943–2000 (2005)

6.P.M. Bleher and K. Liechty, Exact solution of the six-vertex model with domain wall boundary condition. Critical line between ferroelectric and disordered phases. arXiv:0802.0690 [math.ph]

7.P.M. Bleher and K. Liechty, Exact solution of the six-vertex model with domain wall boundary conditions. Ferroelectric phase. arXiv:0712.4091 [math.ph]

8.N.M. Bogoliubov, A.M. Kitaev, and M.B. Zvonarev, Boundary polarization in the six-vertex model. Phys. Rev. E 65, 026126 (2002)

9.F. Colomo and A.G. Pronko, Square ice, alternating sign matrices, and classical orthogonal polynomials. J. Stat. Mech. Theory Exp. 005(1), 33 (2005) (electronic)

10.N.M. Ercolani and K.T.-R. McLaughlin, Asymptotics of the partition function for random matrices via Riemann-Hilbert techniques and applications to graphical enumeration. Int. Math. Res. Not. 14, 755–820 (2003)

11.P.L. Ferrari and H. Spohn, Domino tilings and the six-vertex model at its free fermion point.

J.Phys. A, Math. Gen. 39, 10297–10306 (2006)

12.A.G. Izergin, Partition function of the six-vertex model in a finite volume. Sov. Phys. Dokl. 32, 878 (1987)

13.A.G. Izergin, D.A. Coker, and V.E. Korepin, Determinant formula for the six-vertex model.

J.Phys. A 25, 4315 (1992)

14.V.E. Korepin, Calculation of norms of Bethe wave functions. Commun. Math. Phys. 86, 391– 418 (1982)

15.V. Korepin and P. Zinn-Justin, Thermodynamic limit of the six-vertex model with domain wall boundary conditions. J. Phys. A 33(40), 7053 (2000)

16.G. Kuperberg, Another proof of the alternating sign matrix conjecture. Int. Math. Res. Not. 139–150 (1996)

17.E.H. Lieb, Exact solution of the problem of the entropy of two-dimensional ice. Phys. Rev. Lett. 18, 692 (1967)

18.E.H. Lieb, Exact solution of the two-dimensional Slater KDP model of an antiferroelectric. Phys. Rev. Lett. 18, 1046–1048 (1967)

19.E.H. Lieb, Exact solution of the two-dimensional Slater KDP model of a ferroelectric. Phys. Rev. Lett. 19, 108–110 (1967)

20.E.H. Lieb, Residual entropy of square ice. Phys. Rev. 162, 162 (1967)

21.E.H. Lieb and F.Y. Wu, Two dimensional ferroelectric models. In: Domb, C., Green, M. (eds.) Phase Transitions and Critical Phenomena, vol. 1, pp. 331–490. Academic Press, San Diego (1972)

22.W.H. Mills, D.P. Robbins, and H. Rumsey, Proof of the Macdonald conjecture. Invent. Math. 66, 73–87 (1982)

23.W.H. Mills, D.P. Robbins, and H. Rumsey, Alternating-sign matrices and descending plane partitions. J. Comb. Theory, Ser. A 34, 340–359 (1983)

24.K. Sogo, Toda molecule equation and quotient-difference method. J. Phys. Soc. Jpn. 62, 1887 (1993)

25.B. Sutherland, Exact solution of a two-dimensional model for hydrogen-bonded crystals. Phys. Rev. Lett. 19, 103–104 (1967)

26.G. Szego, Orthogonal Polynomials, 4th edn. Colloquium Publications, vol. 23. AMS, Providence (1975)

27.F.Y. Wu and K.Y. Lin, Staggered ice-rule vertex model. The Pfaffian solution. Phys. Rev. B 12, 419–428 (1975)

28.D. Zeilberger, Proof of the alternating sign matrix conjecture. N.Y. J. Math. 2, 59–68 (1996)

29.P. Zinn-Justin, Six-vertex model with domain wall boundary conditions and one-matrix model. Phys. Rev. E 62, 3411–3418 (2000)

Соседние файлы в папке Diss