
- •Новосибирск
- •Лабораторная работа № 9. Макроскопический анализ сплавов…………..128 Лабораторная работа № 10. Микроскопический анализ сплавов…………135 Введение
- •Лабораторная работа № 1 определение твердости металлов и сплавов
- •1.1. Цель работы:
- •1.2. Теоретическое обоснование
- •Твердость по Бринеллю
- •1− Столик для центровки образца;2 − маховик; 3 − грузы; 4 − шарик; 5− электродвигатель
- •Метод Роквелла
- •Шкалы для определения твердости по Роквеллу
- •Метод Виккерса
- •1 − Столик для установки образца; 2 − маховик; 3 − шток с алмазной пирамидой;
- •4− Педаль пускового рычага;5− подвеска с призмой;6− микроскоп
- •Метод микротвердости − метод Хрущева-Берковича
- •12− Грузы;13− ручка нагружения
- •Твердомер тэмп-2
- •1.3. Оборудование и материалы для выполнения лабораторной работы
- •1.4. Порядок выполнения работы
- •1.5. Содержание отчета
- •1.6. Контрольные вопросы:
- •Литература
- •Диаграмма растяжения
- •Определение твердости материалов
- •Определение твердости по шкале Мооса
- •3.3. Порядок выполнения работы
- •3.4. Содержание отчета
- •2.3. Контрольные вопросы:
- •Лабораторная работа № 3 диаграммы состояния двойных сплавов
- •3.2. Теоретическое обоснование
- •Диаграмма с полной нерастворимостью компонентов в твердом состоянии
- •Диаграмма с полной растворимостью компонентов в твердом состоянии
- •Диаграмма состояния с ограниченной растворимостью компонентов в твердом состоянии
- •Диаграмма состояния с образованием химического соединения между компонентами
- •3.3. Порядок выполнения работы
- •3.4. Содержание отчета
- •3.5. Контрольные вопросы
- •Литература
- •Диаграмма состояния железо-углерод
- •4.3. Порядок выполнения работы
- •4.4. Содержание работы
- •4.5. Контрольные вопросы
- •Литература
- •1 Индивидуальное задание по теме «Диаграмма состояния Fe- Fe3c»
- •Контрольные вопросы для защиты задания
- •Литература
- •Классификация углеродистых сталей
- •Углеродистые конструкционные стали
- •Углеродистые инструментальные стали
- •Микроисследование углеродистой стали
- •Химический и фазовый состав сталей
- •5.3. Порядок выполнения работы:
- •5.4. Содержание отчета:
- •5.6. Контрольные вопросы:
- •Литература Лабораторная работа № 6 микроструктура и свойства чугунов
- •6.2. Теоретическое обоснование
- •Белый чугун
- •Серый чугун
- •Ковкий чугун
- •Высокопрочный чугун
- •Легированные чугуны
- •6.3. Порядок выполнения работы
- •6.4. Содержание отчета
- •6.5. Оборудование и материалы:
- •6.6. Контрольные вопросы
- •Литература
- •Лабораторная работа № 7 термическая обработка углеродистой стали
- •7.2. Теоретическое обоснование
- •7.3. Порядок выполнения работы:
- •Термообработка стали 50
- •Термообработка стали у12 (или стали у8)
- •9.4. Содержание отчета
- •9.5. Контрольные вопросы
- •Литература
- •Лабораторная работа № 8 исследование влияния термической обработки на механические свойства сплава на основе алюминия
- •8.2. Теоретическое обоснование
- •10.3. Порядок выполнения работы
- •Результаты проведенного эксперимента
- •8.4. Содержание отчета
- •8.5. Контрольные вопросы
- •Литература
- •Определение твердости по Бринеллю
- •Соотношение значений твердости, определяемых методами Бринелля и Роквелла
- •Соотношение значений твердости, определяемых разными методами
- •Химический состав (%) и некоторые свойства деформируемых и литейных сплавов на основе алюминия
- •Рекомендуемая литература Основная
- •Дополнительная и справочная
- •Лабораторная работа 9 макроскопический анализ сплавов
- •1.2. Теоретическое обоснование
- •Макроскопическое исследование металла, обработанного давлением
- •1.3. Порядок выполнения работы
- •1.4. Содержание отчета
- •1.5. Контрольные вопросы
- •Литература
- •Лабораторная работа № 10 микроскопический анализ (микроанализ)
- •2.2. Теоретическое обоснование
- •Основные характеристики полировальных алмазных паст
- •Последовательность работы на микроскопе
- •Определение величины зерна в стали
- •Характеристики структуры стали с разной величиной баллов
- •Пересчет номера зерна на стандартное увеличение (100×) при использовании увеличений от 25× до 800×
- •Изучение неметаллических включений
- •2.3. Порядок выполнения работы
- •2.4. Методические указания
- •2.5.Содержание отчета
- •2.6. Контрольные вопросы
- •Литература
- •Травление микрошлифов
Ковкий чугун
Ковкими называют чугуны, в которых графит имеет хлопьевидную форму. Обычный химический состав ковких чугунов: 2,4-2,8 % С; 0,8-1,4 % Si; 1% Мп; 0,1 % S; 0,2 % Р.
Их получают путем специального графитизирующего отжига (томления) отливок из белых доэвтектических чугунов. Отливки загружают в специальные ящики, засыпают песком или стальными стружками для защиты от окисления и производят нагрев и охлаждение по схеме (рис. 6.3).
В процессе отжига цементит, входящий в структуру белого чугуна, распадается на феррит и графит хлопьевидной формы.
При температуре 950-1000 °С происходит графитизация эвтектического и избыточного цементита (превращение метастабильного цементита в стабильный графит и аустенит).
При второй выдержке при температуре 720-740 °С графитизируется цементит образовавшегося перлита (иногда проводят медленное охлаждение от 770 °С до 700 °С в течение 30 часов при этом происходит кристаллизация по стабильной диаграмме). В результате продолжительного отжига весь углерод выделяется в свободном состоянии.
Рис. 6.3. Схема отжига белого чугуна на ковкий
Отсутствие линейных напряжений, снятых во время отжига, благоприятная хлопьевидная форма и изолированность графитных включений обуславливают высокие механические свойства ковких чугунов. Они более стойки при ударах и изгибе, чем серые, и имеют высокие пластические свойства.
По характеру металлической основы ковкие чугуны различают на:
− ферритные (рис. 6.4, а);
− феррито-перлитные (рис. 6.4, б);
− перлитные.
а) б)
Рис. 6.4. Микроструктура ковкого чугуна:
а– ферритная основа,б– ферритно-перлитная основа
Ферритный ковкий чугун КЧ30-6; КЧ33-8; КЧ35-10; КЧ37-12 получают из чугуна белого с содержанием углерода не более 2,5 %, а перлитный КЧ45-7; КЧ50-5; КЧ55-4; КЧ60-3; КЧ65-3; КЧ70-2; КЧ80-1,5− из белого чугуна, в котором углерода не более 3,2 %.
Маркируют ковкие чугуны по ГОСТ 1215-79 буквами КЧ и двумя числами, первое из которых − минимальный предел прочности на растяжение в десятках мегапаскалей, а второе − относительное удлинение в %.
Например, ковкий чугун КЧ 45-7 имеет временное сопротивление при растяжении 450 МПа, относительное удлинение δ = 7 %, НВ 240 и структуру – Ф + П.
Из ковкого чугуна изготавливают детали высокой прочности, работающие в тяжелых условиях износа, способные воспринимать ударные и знакопеременные нагрузки (головки соединительных рукавов воздушной тормозной магистрали, корпусы вентилей, клапаны, муфты, картеры редукторов, коленчатые валы и др.).
Высокопрочный чугун
Высокопрочными называют чугуны, в которых графит имеет шаровидную форму. Их получают модифицированием магнием, церием, иттрием и ферросилицием, которые вводят в жидкий серый чугун в небольшом количестве 0,02-0,08 %. Обычный состав высокопрочного чугуна: 2,7-3,8 % С; 1,6-2,7 % Si; 0,2-0,7 % Мn; 0,02 % S; 0,1 % Р.
По структуре металлической основы высокопрочный чугун может быть:
− ферритным (до 20 % перлита) − ВЧ35, ВЧ40, ВЧ45;
− перлитным (до 20 % феррита) − ВЧ50, ВЧ60, ВЧ70, ВЧ80, ВЧ100.
Шаровидный графит является более слабым концентратором напряжений, чем пластинчатый графит, поэтому меньше снижает механические свойства чугуна (рис. 6.5). Высокопрочный чугун обладает более высокой прочностью, хорошей износостойкостью, антифрикционностью и некоторой пластичностью. Он является хорошим заменителем литой стали, ковкого чугуна, сплавов цветных металлов.
Рис. 6.5. Микроструктура высокопрочного чугуна на феррито-перлитной основе
Маркируют высокопрочные чугуны по ГОСТ 7293-85 буквами ВЧ и двузначным числом, показывающим минимальное значение предела прочности на растяжение в десятках мегапаскалей.
Например, ВЧ40 − высокопрочный чугун, имеет временное сопротивление при растяжении 400 MПa, относительное удлинение − не менее 10 %, твердость НВ140-220, структура ферритная.
Маркировка по предшествующему ГОСТ 7293-79 предусматривала дополнительное указание относительного удлинения в процентах, например, ВЧ40-10.
Из высокопрочных чугунов изготавливают прокатные валки, кузнечно-прессовое оборудование, корпуса паровых турбин, коленчатые валы, шатуны двигателей внутреннего сгорания и другие ответственные детали, работающие при высоких циклических нагрузках и в условиях изнашивания.