
- •2. Классификация измерений и погрешностей измерений.
- •3. Формы представления погрешностей. Свойства случайных погрешностей.
- •4. Основные понятия теории вероятностей. Геометрическая вероятность.
- •5. Основные формулы комбинаторики. Примеры использования
- •6. Теорема сложения вероятностей и ее следствия
- •8.Формула полной вероятности. Формула Бейеса
- •9. Формула Бернулли. Примеры использования.
- •10.Дискретные и непрерывные случайные величины и их характеристики.
- •12. Свойства плотности и функции распределения вероятностей
- •13.Начальные и центральные моменты для дискретных и непрерывных случайных величин.
- •15. Закон больших чисел и центральная предельная теорема
- •17 Точечные и интервальные оценки.
- •18.Понятие доброкачественной оценки
- •19. Методы получения доброкачественных оценок. Метод максимального правдоподобия.
- •20. Равномерный закон распределения случайных величин
- •21. Биномиальный закон распределения
- •22. Локальная и интегральная теоремы Лапласа
- •23. Нормальный закон распределения случайных величин. M(X), d(X), σ.
- •24. Показательное (экспоненциальное) распределение. M(X), d(X), σ
- •26.Распределение Стьюдента
- •27. Распределение хи-квадрат. M(X), d(X), σ
- •28. Гамма распределение
- •29. Мешающие параметры, необходимость их выявления. Критерии Аббе и Граббса
- •30. Приближённые методы исследования ряда случайных величин на соответствие закону распределения.
- •31.Характеристики формы, их вычисление и суть
- •32. Графический критерий исследования ряда погрешностей на соответствие нормальному закону распределения
- •33. . Точные критерии исследования ряда случайных величин. Критерии Пирсона и Колмогорова.
- •34.Основные методы наименьших квадратов. Способы составления систем нормальных уравнений. Метод наименьших квадратов
- •35.Линейная и квадратичная аппроксимация. Построение линий тренда.
- •37.Полиномиальные преобразования при помощи функции нескольких переменных
- •38 . Оценка точности в методе наименьших квадратов.
- •39. Понятие веса. Классическая обработка неравноточных измерений
- •40.Классическая обработка равноточных измерений. Задача эталонирования
- •41.Выявление мешающих параметров непараметрическими методами. Критерий Хэмпэла
- •44.Адаптивная оценка Хогга. Два способа вычисления индикатора k
- •45.Выявление эффектов гетероскедастичности
- •46. Методы выявления систематического влияния. Критерии серий.
- •47. Методы выявления эффектов автокорреляции. Критерий Дарбина-Уотсона.
- •48. Второй центральный смешанный момент (ковариация).
- •49. Парные, частные и множественные коэффициенты корреляции
- •50. Выявление значимости связей.
- •51. Коэффициент достоверности аппроксимации. Оценка надёжности по критерию Фишера.
- •52. Понятие экстраполяции (прогнозирование результатов измерений)
- •53. Фундаментальная теорема переноса ошибок имеет вид:
- •54. Оценка точности функций зависимых результатов измерений.
1.ЗАДАЧИ ПРЕДМЕТА Любые измерения сопровождаются ошибками. Задачами предмета «Теория ошибок измерений» являются: 1) изучение законов возникновения и распределения ошибок измерений и вычислений; 2) оценка точности результатов измерений; установление допусков – критериев, указывающих на наличие грубых ошибок измерений; 3) оценка точности функций измеренных величин; 4) предрасчет ожидаемой точности измерений; 5) математическая обработка результатов многократных измерений одной величины.
Предмет изучения теории вероятностей. События и их виды. Понятие вероятности. Схема "случаев" и непосредственный подсчёт вероятностей. Классическое определение вероятности. Относительная частота. Устойчивость частоты при относительно неизменном комплексе условий. Теорема Бернулли. Статистическое определение вероятности. ОСНОВНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Сумма событий. Теорема сложения вероятностей для несовместных событий. Произведение событий. Условная вероятность. Теорема умножения для зависимых и независимых событий. Теорема сложения для совместных событий. МНОГОКРАТНЫЕ ИСПЫТАНИЯ. Формула Бернулли. Вероятнейшее число появлений события. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. Дискретные и непрерывные случайные величины. Понятие закона распределения. Формы задания закона распределения для дискретных и непрерывных случайных величин. Функция распределения и её свойства. Плотность распределения. Формулы для определения вероятности попадания дискретных и непрерывных случайных величин на заданный интервал. ЧИСЛОВЫЕ ПАРАМЕТРЫ СЛУЧАЙНЫХ ВЕЛИЧИН. Моменты. Математическое ожидание — основная характеристика центра. Дисперсия, среднее квадратическое отклонение, среднее и вероятное отклонения — характеристики разброса значений случайной величины относительно центра. НОРМАЛЬНЫЙ ЗАКОН И ЕГО ОСНОВНЫЕ ПАРАМЕТРЫ. Функция распределения и её связь с интегралом вероятностей. Смысл интеграла вероятностей. Вероятность попадания нормально распределенной случайной величины на заданный интервал. Формулы связи среднего и вероятного отклонений со средним квадратическим отклонением. Понятие о других законах распределения: равномерном, биномиальном, Стьюдента, Пирсона. ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Закон больших чисел. Теорема Ляпунова. ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ. Предмет и основные понятия. Основные задачи: сравнение эмпирического распределения с теоретическим; критерии согласия; оценивание параметров. Понятие о наилучших оценках. Статистические моменты. Дополнительные характеристики случайной величины: асимметрия и эксцесс. Методы оценивания параметров и понятие о доверительных интервалах. Построение доверительных интервалов для математического ожидания и среднего квадратического отклонения. ЭЛЕМЕНТЫ ТЕОРИИ КОРРЕЛЯЦИИ. Статистическая связь между двумя случайными величинами. Линейная и нелинейная корреляция. Коэффициент корреляции и корреляционное отношение, их свойства. Уравнение регрессии. Понятие о множественной корреляции.
2. Классификация измерений и погрешностей измерений.
Погрешность – это отклонение результата измерения от истинного значения измеряемой величины.
Истинное значение ФВ может быть установлено лишь путем проведения бесконечного числа измерений, что невозможно реализовать на практике Таким образом, погрешность измерений представляет собой отклонение от действительного значения ∆=Xд – Хизм
В зависимости от принципов действия прибора те или иные факторы оказывают влияние.
Классификация погрешностей:
1) По способу выражения:
a) Абсолютная – погрешность, выраженная в единицах измеряемой величины ∆=Хд-Хизм
b) Относительная – погрешность, выраженная отношением абсолютной погрешности к результате измерений или действительному значению измеряемой величины γотн=(∆/Xд)* 100 .
c) Приведенная – это относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условию, принятому значению величины постоянному во всем диапазоне измерений (или части диапазона) γприв=(∆/Xнорм)*100, где Хнорм – нормирующее значение, установленное для приведенных значений. Выбор Хнорм производится в соответствии с ГОСТом 8.009-84. Это может быть верхний предел средства измерений, диапазон измерений, длина шкалы и т.л. Для множества средств измерений по приведенной погрешности устанавливают класс точности. Приведенная погрешность вводится потому что относительная характеризует погрешность только в данной точке шкалы и зависит от значения измеряемой величины.
Измерение является Это организованное действие человека, выполняемое для количествен-ного познания свойств физического объекта с помощью определения опытным путем значения какой-либо физической величины [20].
Существует несколько видов измерений. При их классификации обычно исходят из характера зависимости измеряемой величины от времени, вида уравнения измерений, условий, определяющих точность результата измерений и способов выражения этих результатов.
По
способу получения результатов измерений
их разделяют на:Прямые -
это измерения, при которых искомое
значение физической величины находят
непосредственно из опытных данных.
Прямые измерения можно выразить
формулой ,
где
-
искомое значение измеряемой величины,
а
-
значение, непосредственно получаемое
из опытных данных.
При прямых измерениях экспериментальным операциям подвергают измеряемую величину, которую сравнивают с мерой непосредственно или же с помощью измерительных приборов, градуированных в требуемых единицах. Примерами прямых служат измерения длины тела линейкой, массы при помощи весов и др. Прямые измерения широко применяются в машиностроении, а также при контроле технологических процессов (измерение давления, температуры и др.).
Косвенные -
это измерения, при которых искомую
величину определяют на основании
известной зависимости между этой
величиной и величинами, подвергаемыми
прямым измерениям, т.е. измеряют не
собственно определяемую величину, а
другие, функционально с ней связанные.
Значение измеряемой величины находят
путем вычисления по формуле ,
где
-
искомое значение косвенно измеряемой
величины;
-
функциональная зависимость, которая
заранее известна,
-
значения величин, измеренных прямым
способом. Косвенные измерения широко
распространены в тех случаях, когда
искомую величину невозможно или слишком
сложно измерить непосредственно или
когда прямое измерение дает менее точный
результат. Роль их особенно велика при
измерении величин, недоступных
непосредственному экспериментальному
сравнению, например размеров
астрономического или внутриатомного
порядка.
Совокупные - это производимые одновременно измерения нескольких одноименных величин, при которых искомую определяют решением системы уравнений, получаемых при пря-мых измерениях различных сочетаний этих величин.