Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
274
Добавлен:
25.03.2016
Размер:
2.91 Mб
Скачать

Реологическая диаграмма жестко-пластического тела Сен-Венана приведена на рис. 7.

У жестко-пластического тела Сен-Венана деформация при разгрузке не восстанавливается: полностью является пластической p.

Главной особенностью пластической деформации является ее необратимость при снятии нагрузки.

Рис. 7. Особенность развития пластической деформации в теле Сен-Венана

Подчеркнем, что природа пластического деформирования горных пород существенно отличается от природы пластичности металлов. Если пластическая деформация металлов вызвана внутризеренным скольжением (постепенное соскальзывание атомов в кристаллической решетке с одного на другой), в котором активную роль играют дислокации (линейные дефекты тела), обеспечивающие деформирование тела без разрыва его сплошности, то в возникновении остаточной деформации в горной породе вес внутризеренного скольжения в величине необратимой деформации мал. Появление остаточной деформации в горной породе связано, в основном, с межзеренным скольжением (сдвиг зерен по определенным плоскостям) и с разрушением горной породы (закрытие пор и трещин, возникновение микротрещин в местах контакта зерен минералов, обладающих различной сжимаемостью и пр.).

Вязкая деформация. Тело Ньютона (N). Механической моделью тела Ньютона является перфорированный поршень, находящийся в цилиндрическом сосуде с жидкостью (рис. 5 в).

Вязкостью называют свойство тел оказывать сопротивление при перемещении молекул по отношению друг другу. Вязкое течение наступает при любой величине напряжения сдвига i, большем нуля, и развивается с постоянной скоростью =di/dt = соnst, (dim di/dt = c-1), причем скорость деформации сдвига прямо пропорциональна напряжению сдвига. Деформация вязкого течения полностью необратима. Жидкость, удовлетворяющая указанным условиям, называется идеально вязкой ньютоновской жидкостью. Необратимые вязкие деформации называют течением.

Уравнения состояния для ньютоновской жидкости имеют вид:

i = · di/dt, ср = K· ср , (8)

где  коэффициент динамической вязкости, dim  = Па·с, является важным реологическим параметром.

Реологическая диаграмма тела Ньютона приведена на рис. 8. Кривые течения носят линейный характер, т.е. изображаются на графике прямыми линиями, проходящими через начало координат. Величина вязкости определяется углом наклона  луча ОА к оси деформаций: tg  = .

Величина ньютоновской вязкости зависит от температуры, давления, но не зависит от величины скорости сдвига di/dt.

Крайними видами идеализированных тел являются абсолютно твердое (недеформируемое) евклидово тело, реологическое уравнение состояния которого имеет вид i = 0, ср = 0, и идеальная паскалевская жидкость с реологическим уравнением состояния i = 0, ср = 0.

Главной особенностью вяз-кой деформации является ее появление при любой величине касательного напряжения

Рис. 8. Развитие вязкой деформации в теле Ньютона

Условие ср = 0 означает, что объёмная деформация евклидова тела и паскалевской жидкости равна нулю.

Уравнение i = 0 для паскалевской жидкости свидетельствует о том, что эта жидкость имеет нулевую вязкость.

Уравнение i = 0 свидетельствует о том, что модуль сдвига G евклидова тела бесконечно большой.

Таким образом, идеализированные тела, которые мы рассмотрели (тела Гука, Сен-Венана и Ньютона), располагаются между абсолютно твердым (недеформируемым) и идеально жидким телами.

От рассмотрения трех идеальных деформаций вернемся к нашим шарам. Три шара сделаны из реальных материалов. В каждом из этих материалов мы выделили основное поведение (упругую, пластическую и вязкую деформацию), которое замечается даже невооруженным глазом. Если же более тщательно всмотреться в развитие деформаций в шарах при их контакте с поверхностью стола, то обнаруживается, что наряду с доминирующим типом деформации, существуют и не доминирующие, т.е. наблюдаются отклонения от законов деформирования (6), (7), (8). Подобные наблюдения составили основу второй аксиомы реологии.

Вторая аксиома реологии: Любой материал обладает всеми реологическими свойствами, хотя и в разной степени.

В горных породах, не являющихся примером идеального тела, при деформировании развиваются все перечисленные виды деформаций одновременно: упругие, пластические, вязкие. По этой причине для описания их деформирования необходимо использовать более сложные механические модели.

Реологические свойства реальных тел можно моделировать с помощью различных сочетаний идеальных моделей. Существует параллельное и последовательное соединение идеальных моделей между собой. Параллельное соединение элементов обозначается знаком (), а последовательное знаком () . Построение сложных реологических моделей происходит в соответствии с требованиями третьей аксиомы реологии.

Третья аксиома реологии: Существует иерархия реологических тел, согласно которой тело, низшее по иерархии, должно получаться из тела, высшего по иерархии, если в последнем приравнять нулю некоторые реологические параметры.

Третья аксиома реологии «ограничивает» построение новых реологических моделей: если при приравнивании к нулю реологических параметров модель нового реологического тела (высшего по иерархии) не обеспечивает возврат к уже известной модели, отражающей реологическое поведение тела, низшего по иерархии, то построение реологической модели нового тела было сделано неверно. Этот вывод относится и к дифференциальным уравнениям, описывающим поведение тел.

Соседние файлы в папке Пособие и программа