Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
195
Добавлен:
25.03.2016
Размер:
2.91 Mб
Скачать

3.1. Аксиомы реологии. Виды идеальных деформаций

Первая аксиома реологии: Под действием всестороннего равномерного давления все изотропные тела ведут себя одинаково: как идеально упругие тела.

В соответствии с первой аксиомой реологии различие материалов трех шаров не обнаруживается при возникновении в телах объёмной деформации, вызываемой шаровой частью напряженного состояния. В соответствии с разложением тензора напряжений на два слагаемых это означает, что это делает сдвиговая деформация, изменяющая форму тела при действии касательных напряжений.

Сделаем небольшое уточнение. Изотропные материалы, подвергнутые всестороннему сжатию, изменяют свой объём, плотность, не меняя при этом своей формы. В анизотропных же материалах действие всестороннего давления вызывает различные изменения линейных размеров в разных направлениях, это приводит к искажению первоначальной формы тела (деформационная анизотропия).

В механике сплошной среды рассматриваются идеализированные тела, наделенные различными свойствами. Тело, при деформировании которого возникает только упругая деформация, называют идеально упругим. Также определяется идеально пластическое и идеально вязкое тела.

Упругая деформация. Тело Гука (H). Механическая модель упругого тела Гука - пружина, около которой ставится знак тела Гука H (рис. 5 а).

а б в

Рис.5. Механические модели: а  упругого тела Гука,

б  пластичного тела Сен-Венана,

в вязкого тела Ньютона

Упругостью называют способность тела восстанавливать свою форму и объём (у твердых тел) или только объём (жидкость, газы) после прекращения действия сил. Под упругой деформацией понимают деформацию, которая полностью исчезает после снятия нагрузки. Такую деформацию часто называют обратимой, восстанавливающейся. В иде-ально упругом теле упругая деформация возникает практически сразу после приложения нагрузки и столь же быстро исчезает после снятия нагрузки. Упругие деформации могут быть линейными (прямо пропорциональны приложенным напряжениям) и нелинейными (в этом случае говорят о нелинейной упругости).

Реологические уравнения состояния идеального упругого линейно-деформируемого тела (тела Гука) в случае сложного напряженного состояния имеют вид

i = G · i,ср = K·ср, (6)

где G модуль сдвига, dim G = H/м2, K коэффициент объемного деформирования (модуль объёмного сжатия), dim K = H/м2.

Величины G, K являются реологическими параметрами.

Так как в соответствии с первой аксиомой реологии только сдвиговая нагрузка обнаруживает реологические различия между телами, то внимание мы будем уделять только тем реологическим уравнениям состояния, в которых отмечается связь между i и i. Относительно же уравнения ср = Kср заметим следующее. Эта зависимость показывает, что объёмная деформация является только функцией среднего нормального напряжения.

Реологическому уравнению i = G · i соответствует реологическая диаграмма, приведенная на рис. 6. При уменьшении напряжений i линия разгрузки совпадает с линией нагружения. Величина модуля сдвига G определяется тангенсом угла наклона луча 0А к оси деформации: G = tgα.

Главной особенностью упру-гой деформации является ее обратимость при снятии на-грузки. Отсутствует остаточ-ная деформация.

Рис. 6. Деформационная кривая идеально упругого тела

Полное отсутствие деформаций (как сдвиговых, так и линейных) в абсолютно твердом теле при действии на него соответствующих напряжений (касательных или нормальных) свидетельствует о том, что жесткость D евклидова тела, определяемая выражением D = F/l, где F сила, действующая на тело, l величина абсолютной деформации тела, принимает бесконечно большое значение; dim D = Н/м.

Пластичность. Тело Сен-Венана (StV). Механическая модель тела Сен-Венана изображена на рис. 5 б. Она представляет собой две пластинки, края которых соединены c помощью клея внахлест (элемент сухого трения Сен-Венана).

Пластичностью называют свойство тел необратимо изменять свою форму под действием приложенных к нему сил. У идеально пластического тела пластическое состояние наступает тогда, когда интенсивность касательных напряжений достигает некоторого предельного значения. Это предельное значение т называется пределом текучести на сдвиг и является реологическим параметром, dim т = Па. Реологическое уравнение состояния тела Сен-Венана записывается в виде

i = 0  при i < т,

 i при i  т. (7)

При значительной величине пластической деформации упругой объёмной деформацией можно пренебречь. В этом случае условие ср = K·ср заменяется условием несжимаемости тела. Для жестко-плас-тического тела Сен-Венана реологическое уравнение состояния, харак-теризующее изменение объёмной деформации, принимает вид: v = 0.

Соседние файлы в папке Пособие и программа