
- •Г.Д. Бахтина, г.П. Духанин, ж.Н. Малышева
- •Сборник
- •Примеров и задач
- •По физической химии
- •Оглавление
- •6.3. Порядок выполнения семестровых работ . . . . . . . . . . . . . . . . . . .117
- •Введение
- •Основные положения химической термодинамики и ее приложение для расчета равновесий
- •1.1. Основные понятия термодинамики
- •Первый закон термодинамики
- •1.3. Теплоемкость. Зависимость теплоемкости от температуры. Расчет количества теплоты, необходимой для нагревания веществ
- •Теплоемкость газообразного монооксида углерода
- •1.4. Термохимия
- •Расчет стандартных тепловых эффектов химических реакций по стандартным теплотам образования веществ, участвующих в реакции
- •Теплоты образования веществ в указанных фазовых состояниях приведены в табл. 1.2.
- •Теплоты образования веществ
- •Расчет стандартнвх тепловых эффектов химических реакций по стандартным теплотам сгорания веществ, участвующих в реакции
- •Теплоты сгорания веществ в указанных фазовых состояниях приведены в табл. 1.3.
- •Теплоты сгорания веществ
- •Теплоты образования веществ
- •Теплоты образования веществ
- •1.4.2. Расчет тепловых эффектов химических реакций при нестандартной температуре с применением уравнения Кирхгофа
- •Второй и третий законы термодинамики
- •Термодинамические потенциалы
- •Расчет изменения энергии Гиббса химической реакции при стандартной температуре
- •Расчет изменения энергии Гиббса химической реакции при нестандартной температуре
- •Термодинамические свойства веществ
- •Химическое равновесие. Расчет констант равновесия обратимых химических реакций
- •Если в системе протекает обратимая химическая реакция
- •Химический потенциал каждого участника химической реакции является функцией активности ai этого компонента:
- •Из уравнений (1.51) и (1.52) следует, что в состоянии равновесия
- •Термодинамические свойства веществ
- •1.7. Фазовые равновесия в однокомпонентных системах. Уравнение Клапейрона–Клаузиуса и его применение для расчета теплоты испарения, давления насыщенного пара и температуры кипения
- •2. Свойства растворов
- •Способы задания концентрации растворов
- •Закон Рауля. Расчет характеристик разбавленных растворов по понижению температуры замерзания и по повышению температуры кипения
- •Где Токип., Тозам. – температуры кипения и замерзания чистого растворителя;
- •Электрохимия
- •Расчет характеристик растворов электролитов
- •Электрическая проводимость растворов электролитов
- •Расчет термодинамических характеристик гальванических элементов
- •Для цинково-медного гальванического элемента Якоби-Даниэля
- •Законы электролиза Фарадея и их применение для расчета количественных характеристик процесса электролиза
- •Химическая кинетика
- •4.1. Кинетические уравнения гомогенных химических реакций
- •Если к определенному моменту времени концентрация вещества Астала равной 1,5 моль/л, следовательно, количество прореагировавшего числаАбудет равно:
- •Влияние температуры на скорость химических реакций. Применение правила Вант-Гоффа и уравнения Аррениуса
- •Уравнения для расчета кинетических характеристик химических реакций различного порядка
- •5. Задачи для самостоятельного решения
- •Задачи к главе “Основные положения химической термодинамики и ее приложение для расчета равновесий”
- •Задачи к главе “Свойства растворов”
- •Задачи к главе “Электрохимия”
- •5.4. Задачи к главе “Химическая кинетика”
- •Многовариантные семестровые задания
- •6.1. Семестровое задание № 1. “Термодинамика химических реакций”
- •6.2. Семестровое задание № 2 (комплекс задач)
- •6.2.1. Расчет концентрации растворов
- •6.2.4. Расчет кинетических характеристик химических реакций
- •6.3. Порядок выполнения семестровых работ
- •Справочные таблицы
- •Термодинамические свойства простых веществ и соединений
- •Величины коэффициентов Mn для вычисления стандартного изменения энергии Гиббса по методу Темкина и Шварцмана
- •Стандартные электродные потенциалы в водных растворах при 250с
- •Предельная эквивалентная электрическая проводимость ионов (при бесконечном разведении) при 25оС и температурный коэффициент электрической проводимости ;
- •Средние ионные коэффициенты активности γ± растворов сильных электролитов
- •Библиографический список
- •Галина Дмитриевна Бахтина
Законы электролиза Фарадея и их применение для расчета количественных характеристик процесса электролиза
Электролизомназывается совокупность электрохимических окислительно-восстановительных реакций, протекающих на электродах при прохождении постоянного электрического тока через раствор или расплав электролита. При этом на катоде происходит процесс восстановления, а на аноде – окисления. Катионы восстанавливаются в ионы более низкой степени окисления или в атомы, например:
Fe3+ + e – → Fe2+ ; (3.54)
Cu2+ + 2 e – → Cu. (3.55)
Нейтральные молекулы могут участвовать в превращениях на катоде непосредственно или взаимодействовать с продуктами катодного процесса, которые рассматриваются в этом случае как промежуточные вещества. Например, восстановление воды:
2 H2O + 2 e – → H2 + 2 OH–. (3.56)
На аноде окисляются ионы или молекулы, поступающие из объема электролита, например:
4 OH– – 4 e – → 2 H2O + H2; (3.57)
2 Cl– – 2 e – → Cl2,– (3.58)
или принадлежащие материалу анода. в последнем случае анод растворяется, например:
Cu – 2 e – → Cu2+ (растворение медного анода). (3.59)
Протекание электродных реакций зависит от состава и концентрации электролита, материала электродов, электродного потенциала, температуры, гидродинамических условий.
Процессы электролиза описываются законами Фарадея, которые в объединенной форме читаются следующим образом: массы веществ, испытавших электрохимические превращения на электродах, прямо пропорциональны количеству протекшего через электролит электричества и электрохимическим эквивалентам этих веществ:
(3.60)
где m – масса вещества, превратившегося на электроде (выделившегося на электроде),
электрохимический
эквивалент
– величина характеризующая массу
продуктов электролиза, выделившихся
на электродах при прохождении через
электролит 1 Кл электричества;
Э – химический эквивалент вещества (эквивалентная масса вещества) при окислительно-восстановительном превращении, г/экв;
q – количество прошедшего электричества, Кл;
F – число Фарадея (96485 Кл/г-экв) – количество электричества, необходимое для химического превращения (выделения на электроде) 1 г-экв вещества.
Так как q = I · τ (I – сила тока, А; τ – продолжительность электролиза, с), то уравнение закона Фарадея может быть записано следующим образом:
(3.61)
Химический эквивалент вещества (эквивалентная масса вещества) при окислительно-восстановительном превращении рассчитывается по формуле:
, (3.62)
где М– молярная масса вещества, претерпевающего превращение на электроде, г/моль;
n– количество электронов, участвующих в одном акте химического превращения.
При электрохимических процессах часто наблюдаются отклонения от законов Фарадея: масса действительно полученного или разложившегося продукта не соответствует теоретической. Эти отклонения – кажущиеся и возникают за счет одновременного протекания побочных электрохимических процессов; химических реакций, в которые вступает продукт; потерь продукта и потерь электроэнергии на преодоление сопротивления электролизера. Эффективность электрохимического процесса оценивается выходом по току Вт:
(3.63)
Эта величина может быть выражена в процентах:
.
(3.64)
Тогда практическое количество вещества, образующееся при электролизе рассчитывается по формуле:
.
(3.65)
П р и м е р 3.18. Какое количество алюминия выделится при электролизе за время 12 ч, если сила тока I =2,5 A, а выход по току составляет 88 %. Молярная масса алюминия М, равная его грамм-атомной массе А, составляет 26,98 г/моль.
Р е ш е н и е
Выделение алюминия при электролизе происходит на катоде при прохождении следующей реакции восстановления:
Al3+ + 3 e – = Al; n = 3.
Химический эквивалент алюминия рассчитываем по формуле (3.62):
Э = М / 3 = 26,98 / 3 = 8,99 г/экв.
Продолжительность электролиза τ = 12 час = 12 · 3600 = 43200 с.
По объединенному закону Фарадея (3.61) находим теоретическое количество алюминия, выделяющееся при электролизе в указанных условиях:
г.
Практическое количество выделившегося при электролизе алюминия находим с учетом величины ВТ по формуле (3.65):
П р и м е р 3.19. Определить время, необходимое для выделения при электролизе 1,2 г меди, если сила тока I = 2 A, а выход по току ВТ = 96 %.
Р е ш е н и е
На основании формулы (3.64) находим, на какое теоретическое количество меди необходимо рассчитывать продолжительность электролиза:
Выделение меди при электролизе происходит на катоде при прохождении следующей реакции восстановления:
Сu2+ + 2 e– = Cu; n = 2.
Химический эквивалент меди рассчитываем по формуле (3.62):
Э = М / 2 = 63,54 / 2 = 31,77 г/экв.
Из уравнения закона Фарадея (3.61) находим время процесса: