Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Patterson, Bailey - Solid State Physics Introduction to theory

.pdf
Скачиваний:
1117
Добавлен:
08.01.2014
Размер:
7.07 Mб
Скачать

8.5 The Theory of Superconductivity (A)

487

 

 

where ωq is the energy of the created phonon (with = 1 and ωq = ωq). Using

n

+1 an

 

=

n

 

+1 ,

 

(8.123)

q

q q

 

q

 

 

 

we find

 

 

 

 

 

 

 

 

nq +1 S nq = −i BqCk

+qCk

 

 

nq+1

δqq

 

εk

εk +qωq

 

 

k,q

 

 

 

(8.124)

 

 

 

 

 

 

nq+1

 

= −iBqCk

qCk

 

.

 

 

 

 

 

k

 

 

 

εk εk qωq

 

In a similar way we can show

nqS nq+1 = iBqCk

+qCk

nq+1

.

k

 

εk εk +q +ωq

Now, using

H S = H 0 + 12 [H epS SH ep ] +…,

with

H ep = i BqCk+qCk (aq aq ) k,q

(8.125)

(8.126)

(8.127)

(X has now been set equal to 1), and taking phonon expectation values for a particular phonon state, we have

n H S n =

n H 0

n +

1

[ n H ep m m S n n S m m H ep n ]

 

 

 

2

m

=

n H 0

m +

1

[(H ep )n,n1Sn1,n + (H ep )n,n+1Sn+1,n (8.128)

 

 

 

2

Sn,n1(H ep )n1,n Sn,n+1(H ep )n+1,n ].

 

 

 

 

Since we are interested only in electronic coordinates, we will write belownq|HS|nq as HS, and nq|H0|nq as H0, and hope that no confusion in notation will arise. Using

(H ep )nq ,nq1

= −iBqCkqCk nq ,

(8.129)

 

k

 

 

and

 

 

 

(H ep )nq ,nq+1

= iBqCk

+qCk nq +1 ,

(8.130)

 

k

 

 

488 8 Superconductivity

the effective Hamiltonian for electrons is given by combining the above. Thus,

 

1

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

H S = H 0 +

Bq

C

CkC

 

 

Cknq

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

k,kk q

 

 

 

 

k

′+q

 

 

 

 

 

εkεk′+q +ωq

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

+ C

+q

C

C

 

C

k

(n

 

+1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

 

k

 

k′−q

 

 

q

εkεk′−q

ωq

(8.131)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

C

 

 

C

 

C

 

n

 

 

 

1

 

 

 

 

 

 

 

′−q

k

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

 

k +q

 

 

q

εkεk′−q ωq

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

C

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

C

 

 

C

 

(n

 

+1)

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

εkεk′+q

 

 

 

 

 

 

 

k

′+q

 

k

k q

 

 

k

q

 

 

+ωq

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Making dummy variable changes, dropping terms that do not involve the interaction of electrons (i.e. that do not involve both k and k), and using the commutation relations for the C, it is possible to write the above in the form

H S = H 0 +

1

 

Bq

 

2

Ck′+qCkCkqCk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

k,k

 

 

 

 

 

 

 

 

 

 

 

 

(8.132)

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

×

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

ε

 

ε

 

ω

 

ε

 

ε

 

+ω

 

 

 

 

 

 

 

 

 

k

k q

q

 

k

k′+q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

q

 

In order to properly interpret Hamiltonians such as the above equation, which are expressed in the second quantization notation, it is necessary to keep in mind the appropriate commutation relations of the C. By Appendix G, these are

CkCk+ CkCk = δkk,

(8.133)

CC

+ C

C= 0 ,

(8.134)

k k

k

k

 

 

and

 

 

 

 

CkCk

+ CkCk

= 0 .

(8.135)

The Hamiltonian (8.132) describes a process called a virtual exchange of a phonon. It has the diagrammatic representation shown in Fig. 8.19.

k q

k+ q

k

q

k

 

Fig. 8.19. The virtual exchange of a phonon of wave vector q. The k are the wave vectors of the electrons. This is the fundamental process of superconductivity

8.5 The Theory of Superconductivity (A)

489

 

 

Note that (8.132) is independent of the number of phonons in mode q, and it is the effective electron Hamiltonian with phonons in the single mode q. To get the effective Hamiltonian with phonons in all modes, we merely have to sum over the modes of q. Thus, the total effective interaction Hamiltonian is given by

H I =

1

∑ ∑

 

Bq

 

2 Ck′+qCkCk

qCk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

q k,k

 

 

 

 

 

 

1

 

 

 

 

 

 

1

 

 

 

(8.136)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

×

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

ε

 

 

 

ε

 

ω

 

ε

 

ε

 

+ω

 

 

 

 

 

 

k

k q

q

 

k

k′+q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

q

 

By dropping further terms that do not involve the interaction of electrons (terms not involving both k and k) and by making variable changes, we can reduce this Hamiltonian to

H I = ∑ ∑

 

Bq

 

2

ωq

 

Ck′+qCk

qCkCk.

(8.137)

 

 

 

 

 

(εk εk q )2

ωq2

q k,k

 

 

 

 

 

 

 

From the above equation, we see that there is an attractive electron–electron interaction for |εk εkq| < |ωq|. We will assume, for appropriate excitation energies, that the main interaction is attractive. In this connection, most of the electron energies of interest are near the Fermi energy εF. A typical phonon energy is the Debye energy ωD (or cutoff frequency with = 1). Many approximations have already been made, and so a very simple criterion for the dominance of the attractive interaction will be assumed. It will be assumed that the interaction is attractive when the electronic energies are in the range of

εF ωD < εk < εF + ωD ( 1here) .

(8.138)

The states that do not satisfy this criterion are not directly involved in the superconducting transition, so their properties are of no particular interest. Hence, the effective Hamiltonian can be written in the following form (fourth major approximation):

H I ≡ −∑ ∑ VqCk′+qCk

qCkCk.

(8.139)

q k,k

 

 

For simplicity, we will assume that Vq is positive and fitted from experiment, that Vq = Vq and Vq = 0, unless q is such that (8.138) is satisfied. We assume that any important interactions not included in the above equation can be included by renormalizing (i.e. changing) the quasiparticle mass.

8.5.3 Cooper Pairs and the BCS Hamiltonian (A)

Let us assume that εk = 0 at the Fermi level. The total effective Hamiltonian for the electrons is then

H = εkCkCk

VqCk′+qCk

qCkCk.

(8.140)

k

k,k,q

 

 

490 8 Superconductivity

By Appendix G, the Fermion operators satisfy

 

 

 

 

 

 

 

C

j

n n

j

… = ()Pj n

j

n (1n

j

),

 

(8.141)

 

1

 

 

 

 

1

 

 

 

 

 

Cn n

j

… = ()Pj (1n

j

) n (1+ n

j

)

,

(8.142)

j

1

 

 

 

 

 

1

 

 

 

 

 

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pj = nP .

 

 

 

 

 

(8.143)

 

 

 

 

 

 

P=1

 

 

 

 

 

 

 

 

 

It is essential to notice the alternation in sign defined by (8.142). This alternation is very important for discovering the nature of the lowest-energy state. When we begin to guess a trial wave function, if we pay no attention to this alternation of sign, the presence of the interaction will result in little lowering of the energy. What we need is a way of selecting the trial wave function so that most of the matrix elements of individual terms in the second sum in (8.138) are negative. The way to do this for the ground state is by grouping the electrons into Cooper pairs. (These will be precisely defined below.)

There are several assumptions necessary to construct a minimum energy wave function [60, p. 155ff]. For the ground-state wave function, it will be assumed that the Bloch states are occupied only in pairs. In fact, the superconducting ground state is a coherent superposition of Cooper pairs. The Hamiltonian conserves the wave vector, and only pairs with equal total momentum will be considered, i.e.,

k + k′ = K ,

(8.144)

where K is the same for each pair. It is reasonable to suppose that K is zero for the ground (noncurrent carrying) state of the pairs.

Cooper Pairs8

Before proceeding, let us discuss Cooper pairs a little more. A large clue as to the nature of the unusual character of the superconducting state was obtained by L. Cooper in 1956. He showed that the Fermi sea was unstable if electrons interacted by an attractive mechanism—no matter how weak.

Consider the normal Fermi sea of electrons with a well-defined Fermi energy EF. Now add two more electrons interacting with an attractive interaction V(1, 2) and suppose the only interaction with the other electrons is via the Pauli principle.

We write the Schrödinger wave equation for the two electrons as

 

2

2

 

2

2

 

 

 

 

 

 

+V (1, 2)

ψ(1, 2)

= Eψ(1, 2) .

(8.145)

 

2m

 

2m 1

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 See Cooper [8.10].

 

 

 

8.5 The Theory of Superconductivity

(A) 491

 

 

 

 

 

 

 

We seek a solution of the form

 

 

 

 

ψ(1, 2) =

V

 

A(1, 2)

1

eik (r1 r2 ) f (k)dk ,

(8.146)

(2π)3

 

 

V

 

where A(1, 2) is the antisymmetric spin zero spin wave function

 

A(1,2) = 1

[α(1)β(2) α(2)β(1)] ,

 

2

 

 

 

with α, β being the usual spin-up and -down wave functions (note AA = 1) and f(k) = +f(−k) so that the spatial wave function is symmetric (it can be shown that the ψ with spin 1 and antisymmetric wave function yields no energy shift, at least in our approximation, and in any case such wave functions correspond to p-state pairs that we are not considering). Note that the spatial wave function pairs off the electrons into (k, −k) states.

Inserting (8.146) into (8.145) we have

1

 

 

2

 

 

 

2

 

 

 

 

 

ik (r1

 

 

 

 

 

 

 

2

 

 

 

2

 

 

 

r2 )

dk

 

(2π)3

A(1, 2)

2m

k

 

+

2m

k

 

+V

 

f (k)e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(8.147)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=A(1, 2) Ef (k)eik (r1 r2 )dk . (2π)3

Now multiply by

A(1, 2) V1 eik(r1 r2 ) ,

and integrate over r1 and r2 and we obtain (r = r1 r2, V(r1, r2) = V(r1 r2) = V(r),

and Ek = 2k2/2m)

 

 

 

 

 

 

 

∫∫ eikr [2Ek +V (r)] f (k)eik r drdk = Ef (k)ei(k k) rdk .

(8.148)

Using

 

 

 

 

 

 

 

 

 

1

 

 

eik r dk = δ (k) ,

 

 

(2π)3

 

 

 

 

 

 

 

and

 

 

 

 

 

 

 

Vk,k

=

1

 

eikrV (r)eik rdr ,

 

 

 

 

 

 

V

 

 

 

 

 

we obtain

 

 

 

 

 

 

 

[2EkE] f (k) +

V

f (k)Vk,k dk = 0 .

(8.149)

(2π)3

 

 

 

 

 

 

 

 

492 8 Superconductivity

We suppose

Vk,k = −V0 < 0 for EF < Ek , Ek< EF + ωD .

= 0 otherwise.

Notice we are using the ideas that led us to (8.138), divide by 2EkE and integrate over kand obtain (after canceling)

1 =V0

V

dk

.

(8.150)

(2π)3

2EkE

 

 

 

 

Note that in the limit of large volumes

V / N

dk( )

1

kN (E)( )dE,

(2π)3

N

 

 

where N(E) is the density of state for one spin per unit cell (N unit cells). Thus with Epair = E

1

=V0 EF + ωD

 

 

 

N (E)

 

 

 

dE.

 

2E′ − E pair

 

 

 

 

EF

 

 

 

 

 

 

 

 

Note we can replace N(E′) N(EF) because

ωD << EF so we obtain

 

V N (E

F

)

 

 

2EF + 2

ωD

Epair

 

1 =

 

0

 

ln

 

 

 

 

 

 

 

 

 

 

 

.

 

2

 

 

 

 

 

2EF Epair

 

 

 

 

 

 

 

 

 

 

Let δ = 2EF Epair so

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

exp V N

(E

 

)

 

 

 

 

δ =

ωD

 

 

 

0

F

 

 

,

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

sinh

 

 

 

 

 

 

 

 

 

 

 

 

 

V N (E

F

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

(8.151)

(8.152)

(8.153)

and in the weak coupling limit

 

2

 

 

 

 

 

 

 

 

(8.154)

 

 

 

δ = 2 ωD exp V N (E

F

) .

 

0

 

 

 

We note in particular, the following points:

1.A pair electron wave function that is independent of the direction of r1 r2 is said to be an s wave function, which is consistent with an antisymmetric spin wave function.

2.δ is not an analytic function of V0 so ordinary perturbation theory would not work.

3.In the BCS theory one considers pairing of all electrons.

4.For δ > 0 then the Fermi sea is unstable with respect to the formation of Cooper pairs.

8.5 The Theory of Superconductivity (A)

493

 

 

BCS Hamiltonian

Returning to the mainstream of the BCS argument, the above reasoning can be used to pick out the best wave function to use as a trial wave function for evaluating the ground-state energy by variational principle. For mathematical convenience, it is easier to place these assumptions directly in the Hamiltonian. Also, due to exchange, the spins in the Cooper pairs are usually opposite. Thus, the interaction part of the Hamiltonian is now written (fifth major approximation) with K = 0,

H I = −VqCk

+qCk qCkCk.

(8.155)

k,q

 

 

Next, assume a “BCS Hamiltonian” for interacting pairs consistent with (8.155), with k + q k, k k, Vq = Vkk= −Vk,k

H = εkCkσ Ckσ + Vk,kCkCkCk′↓Ck′↑ ,

(8.156)

kσ

k,k

 

 

 

where

 

 

 

 

 

 

εk

=

 

2k 2

μ ,

 

(8.157)

 

2m

 

 

 

 

 

 

 

and where μ is the chemical potential. Also

 

 

 

H H 0 + H I ,

 

(8.158)

and note

 

 

 

 

 

 

V

=V

k,k

=V *

.

(8.159)

k,k

 

 

k,k

 

 

As before C are Fermion (electron) annihilation operators, and C are Fermion (electron) creation operators. Defining the pair creation and annihilation operators

 

 

 

 

 

 

 

 

b

= C

C

,

 

(8.160)

 

 

 

 

 

 

 

 

k

 

k

 

k

 

 

 

 

 

 

 

 

 

 

 

bk = CkCk;

 

(8.161)

and defining

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tr(eβH b

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bk =

 

 

 

k

 

,

(8.162)

 

 

 

 

 

 

 

Tr(eβH )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

¯

*

using Tr(AB) = Tr(BA). We can also show in the representa-

we can show bk

 

= bk

 

 

 

¯

*

 

 

¯

 

 

 

 

 

 

 

 

 

tion we use that bk

 

= bk. We define

 

 

 

 

 

 

 

 

 

 

 

 

 

k = −Vk,k

bk= *k .

(8.163)

 

 

 

 

 

 

 

 

 

k

 

 

 

 

 

494 8 Superconductivity

As we will demonstrate later, this will turn out to be the gap parameter. We can write the interaction term as

 

 

 

 

 

H I = Vk,kbkbk.

 

 

 

 

 

(8.164)

 

 

 

 

 

 

 

 

k,k

 

 

 

 

 

 

 

 

Note

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bk=

 

 

 

 

 

 

 

 

 

 

 

 

 

(8.165)

bk+ δbk= bk+ (bk

bk) ,

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

=

 

*

+δb

=

 

*

 

+ (b

 

* ) ;

(8.166)

b

b

b

k

 

 

k

 

 

k

 

k

 

k

 

 

k

 

 

b=

 

* +δb=

 

+δb;

(8.167)

 

b

b

 

k

 

k

k

k

k

 

and we will neglect (δbk)×(δbk) terms. (This is sort of a mean-field-like approximation for pairs.) Thus, using (8.166) and (8.167) and neglecting O(δb2) terms, we can write

bkbk= (

bk +δbk)(

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bk+δbk)

 

 

 

 

 

=

 

 

 

 

 

+

 

 

δ

 

 

+

 

 

 

 

 

δ

 

 

 

,

 

 

(8.168)

b

b

b

b

b

b

 

k k

 

k

 

 

 

k

 

 

 

 

k

 

 

 

 

k

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bk bk+

bkbk

bk bk,

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

assuming bk is real. Also,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H I = Vk,k(

bkbk+

 

 

 

 

 

 

 

 

(8.169)

bkbk bkbk ) .

k,k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H = εkCkσ Ckσ (

kbk+

kbk k

 

 

(8.170)

bk ) .

kσ

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We now diagonalize by a Bogoliubov–Valatin transformation:

 

Ck = ukαk + vk βk,

 

 

 

 

(8.171)

Ck= uk βk vkαk;

 

 

 

 

(8.172)

where uk2 + vk2 = 1 (to preserve anticommutation relations), uk and vk are real, and the α and β given by

αk= ukCk

vkCk,

(8.173)

βk= ukCk

+ vkCk,

(8.174)

8.5 The Theory of Superconductivity (A)

495

 

 

are Fermion operators obeying the usual anticommutation relations. The αk, and βkcreate “bogolons”. The algebra gets a bit detailed here and one can skip along unless curious,

bk = CkCk= (vkαk+ uk βk )(ukαk + vk βk)

bk= CkCk= (ukαk+ vk βk )(vkαk + uk βk)

CkCk= (ukαk+ vk βk )(ukαk + vk βk)

CkCk= (vkαk + uk βk)(vkαk+ uk βk )

bk= −ukvkαkαk + ukvk βk βkvk2βkαk + uk2αkβk

bk = −vkukαkαk + uk vk βk βkvk2αkβk+ uk2 βkαk

CkCk= uk2αkαk + vk2 βk βk+ uk vkαkβk+ uk vk βkαk

CkCk= uk2βkβk + vk2αkαkukvk βkαkvkukαk βk

H= k [2εkukvkαkβk+ 2εk βkαkuk vk

+εk (uk2 vk2 )(αkαk + βkβk ) + 2εk vk2

+kukvk (αkαk + βkβk )

kuk vk + k vk2βkαk kuk2αkβk

+

*kukvk (αkαk + βkβk ) *kukvk

+

kvk2αkβk*kuk2βkαk ] + k k

 

 

bk .

Rewriting this we get

H = k {( 2

 

kukvk εk ( vk2 uk2 ))(αkαk + βkβk )

+( 2ε

k

u

k

v

k

+

k

( v2

u2

))(αβ+ β

k

α

k

)} +G,

 

 

 

 

k

k

k k

 

 

where

G = (2εk vk2 2 kuk vk + kbk ) .

Next, choose

2εkuk vk + k (vk2 uk2 ) = 0 ,

(8.175)

(8.176)

(8.177)

(8.178)

(8.179)

(8.180)

(8.181)

(8.182)

(8.183)

(8.184)

(8.185)

496 8 Superconductivity

so as to diagonalize the Hamiltonian. Also, using uk2 + vk2 = 1 let

 

 

vk2 =

 

1 a ,

 

 

(8.186)

 

 

 

 

2

 

 

 

 

 

 

 

 

vk2 uk2 = −2a ,

 

 

(8.187)

ukvk =

 

 

1

a2 ;

 

(8.188)

 

 

 

 

 

 

4

 

 

 

 

 

 

 

2εk

1 a2

=

 

k 2a ,

(8.189)

 

 

4

 

 

 

 

 

 

 

 

 

 

2

 

1

a

2

 

=

 

2

2

.

(8.190)

εk

 

4

 

 

 

 

k a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus

 

 

 

 

 

 

 

 

 

 

 

 

 

a =

 

 

εk

.

 

(8.191)

 

 

 

2

εk2 +

2k

 

 

 

Rewriting,

 

 

 

 

 

 

 

 

 

 

 

 

 

H = [2 kuk vk εk (vk2 uk2 )]×(αkαk + βkβk ) + G .

(8.192)

But, define

 

 

 

 

 

 

 

 

 

 

 

 

 

Ek =

εk2 +

 

2k ,

 

(8.193)

 

 

 

a =

 

εk

 

,

 

 

 

(8.194)

 

 

 

 

2Ek

 

 

 

 

 

 

 

 

 

 

 

 

and thus

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2uk vk =

 

 

k

.

 

 

(8.195)

 

 

 

 

 

 

 

 

 

 

 

 

 

Ek

 

 

 

Thus, after a bit of algebra,

 

 

 

 

 

 

 

 

 

 

 

 

 

2 kukvk εk (vk2 uk2 )] = Ek .

(8.196)

So

 

 

 

 

 

 

 

 

 

 

 

 

 

H = k Ek (αkαk + βkβk ) + G ,

(8.197)

Соседние файлы в предмете Химия