Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы_III-IV.doc
Скачиваний:
100
Добавлен:
05.03.2016
Размер:
1.36 Mб
Скачать

Изменение координатного столбца при переходе от базиса к базису

Пусть e = (e1 , … , en) и f = (f1 , … , fn) – два базиса векторного пространства V, v V. Тогда v = e[v]e = v = f[v]f . Выясним, как связаны координатные столбцы [v]e и [v]f .

Имеем f = eTe,f и e[v]e = v = f[v]f = (eTe,f)[v]f = e(Te,f [v]f ), т.е.

.

Пример. Пусть V – трёхмерное векторное пространство с базисом e = (e1 , e2 , e3), v V и [v]e = . Найти [v]f , где f = (e1 + e2 , e3 , e1).

[v]f = Tf, e[v]e = Te,f–1[v]e = .

§ 4. Матрица линейного оператора

Пусть V – векторное пространство с базисом e = (e1 , … , en), : V V – линейный оператор. Обозначим через (e) конечную систему векторов ((e1), … , (en)) V n. Каждый вектор (ej) (1 j n) к.с.в. (e) однозначно записывается в виде (ej) = e[(ej)]e и из полученных координатных столбцов можно образовать матрицу []e = ([(e1)]e , … , [(e1)]e ) M(n, F), которая называется матрицей линейного оператора в базисе e и удовлетворяет равенству (e) = e[]e .

Примеры: 1. Пусть линейный оператор : V V переводит базис e = (e1 , e2 , e3) трёхмерного векторного пространства V в систему векторов (e2 + e3 , e1e2 , e1 + e3). Тогда [(e1)]e = , [(e2)]e =, [(e3)]e = , и []e = .

2. Пусть V = R3, : R3 R3 , (x; y; z) = (xy; y + z; x). Найдём матрицу []e в базисе e = (e1 = (1; 1; 0), e2 = (0; 1; 1), e3 = (0; 0; 1)).

Имеем (e1) = (1; 1; 0) = (0; 1; 1), (e2) = (0; 1; 1) = (–1; 2; 0), (e3) = = (0; 0; 1) = (0; 1; 0). Искомая матрица линейного оператора состоит из координатных столбцов полученных векторов. Поэтому получается матричное уравнение

(e1t , e2t , e3t)[]e = ((e1)t, (e2)t, (e3)t) или []e = .

Значит []e = .

3. Матрица линейного оператора : F n F n в базисе e = (e1 , … , en) находится из матричного уравнения (e1t , … , ent)[]e = ((e1) t , … , (en) t).

4. Матрица линейного оператора : nF nF в базисе e = (e1 , … , en) находится из матричного уравнения (e1 , … , en)[]e = ((e1) , … , (en)).

Координатная форма записи линейного оператора

Пусть V – векторное пространство над полем F с базисом e = (e1 , … , en), : V V – линейный оператор, x V. Найдём связь между координатными столбцами [x]e и [(x)]e .

Пример. Пусть F – поле, V = n F, A M(n, F). Тогда отображение m : n F n F, заданное правилом x n F m(x) = Ax , является линейным оператором, причём для стандартного базиса e = (e1t , … , ent) в n F, где ei = (0; … ; 0; , 0; … ; 0), имеем [x]e = x и m(x)]e = [Ax]e = Ax = [m]e . Таким образом, x n F [m(x)]e = [m]e[x]e .

Оказывается, что аналогичная формула имеет место и в общем случае. Для её вывода понадобится следующее свойство линейных операторов:

Свойство согласованности матричного умножения с действием линейного оператора: Пусть V – векторное пространство над полем F, : V V – линейный оператор. Тогда для любой к.с.в v = (v1 , … , vn) Vn и матрицы T M(n, m, F) справедливо равенство (vT) = (v)T.

Действительно, если t(j) = – j-й столбец матрицы T (1 j m), то

vt(j) = t1jv1+ … +tnjvn , (vt(j)) = (t1jv1+ … +tnjvn) =

= t1j(v1)+ … +tnj(vn) = (v)t(j).

Таким образом, (vT) = (v1t(1), … , vnt(m)) = ((vt(1)), … , (vt(m))) = = ((v)t(1), … , (v)t(m)) = (v)T, что и требовалось доказать.

Теперь вывод общей формулы прост: если x = e[x]e , то

e[(x)]e = (x) = (e[x]e ) = (e)[x]e = e[]e[x]e ,

так что [(x)]e = []e[x]e .

Доказанная формула [(x)]e = []e·[x]e называется координатной формой записи линейного оператора в базисе e.