Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
phiz_prakt.doc
Скачиваний:
5
Добавлен:
29.02.2016
Размер:
4.8 Mб
Скачать

1. Биения.

Рассмотрим сложение двух гармонических колебаний, происходящих вдоль одной прямой с частотами ω1 и ω2, незначительно отличающихся друг от друга. (Ω=( |ω1 - ω2 |<< ω1 и Ω<< ω2 ).Пусть в начальный момент времени фазы складываемых колебаний одинаковы. Тогда эти колебания запишутся в виде

и(4)

Найдем сумму двух таких колебаний, предположив для простоты сначала, что их амплитуды одинаковы (A1 = A2): (5)

Рис. 3.

Отсюда видно, что результирующее колебание (биение) происходит с частотой (ω12)/2, а амплитуда колебаний со временем изменяется в пределах от 2A1 до 0 по закону (рис. 3). Значение 2A1 достигается тогда, когда фазы складываемых колебаний совпадают, а нуль - когда фазы противоположны. Периодическое изменение результирующей амплитуды, получающееся при сложении колебаний, совершающихся с близкими частотами и вдоль одной прямой, называют биениями. Циклическая частота биений Ω= |ω1 - ω2 |, период биений Т = 2π/ Ω (рис.3) и частота биений

νб = 1/Tб = |ν1 - ν2 |, где ν1 и ν2- частоты складываемых колебаний.

Рис. 4.

Если амплитуды складываемых колебаний не равны (A1 # A2), то максимальное значение амплитуды результирующего колебания равно A1+A2, а минимальное  А1-А2. В этом случае биения выражены менее четко (рис.4). Частоты Ω, νб и период Tб определяются разностью частот складываемых колебаний и не зависят от их амплитуд и начальных фаз.

Сложение колебаний во взаимно перпендикулярных направлениях.

Представим две взаимно перпен­дикулярные векторные величины x и y, изменяющие­ся со временем с одинаковой частотой ω по гармони­ческому закону

(6)

где ex и eуорты координатных осей x и y, А и Bамплитуды колебаний. Величинами x и у может быть, например, смещения материальной точки (частицы) из положения равновесия. В случае колеблющейся частицы величины

, , (7)

определяют координаты частицы на плоскости xy. Частица будет двигаться по некоторой траектории, вид которой зависит от раз­ности фаз обоих колебаний. Выражения (6) пред­ставляют собой заданное в параметрической форме уравнение этой траектории. Чтобы получить уравне­ние траектории в обычном виде, нужно исключить из уравнений (6) параметр t. Из первого уравне­ния следует, что

(8)

Соответственно

(9)

Развернем косинус во втором из уравнений (6) по формуле для косинуса суммы:

Подставим вместо cosωt и sinωt их значения (3) и (4):

Преобразуем это уравнение

(10)

Это уравнение эллипса, оси которого по­вернуты относительно координатных осей х и у. Ори­ентация эллипса и его полуоси зависят довольно сложным образом от амплитуд A и В и разности фаз α.

Попробуем найти форму траектории для нескольких частных случаев.

  1. Разность фаз α равна нулю.

В этом случае уравнение (10) упрощается следующим образом:

(11)

Отсюда получается уравнение прямой:

Результирующее движение является гармоническим колебанием вдоль этой прямой с частотой ω и ам­плитудой, равной (рис. 5а).

  1. Разность фаз α равна ±π.

Уравнение (10) имеет вид

(12)

Следовательно, результирующее движение представ­ляет собой гармоническое колебание вдоль прямой

(рис. 5б)

Рис.5.

  1. Разность фаз .

Уравнение (10) переходит в уравнение эллипса, приведенного к координатным осям:

(13)

Рис.6.

Полуоси эллипса равны соответствующим амплиту­дам колебаний. При равенстве амплитуд А и В эллипс превращается в окружность.

Случаи и отличаются на­правлением движения по эллипсу или окружности.

Следовательно, равномерное движение по окружности радиуса R с угловой скоростью ω может быть представлено как сумма двух взаимно перпен­дикулярных колебаний:

,

(знак плюс в выражении для у соответствует движе­нию против часовой стрелки, знак минус — движе­нию по часовой стрелке).

Если частоты взаимно перпендикулярных колеба­ний не одинаковы, то траектории результирующего движения имеют вид сложных кривых, на­зываемых фигурами Лиссажу.

Рис.7. Фигура Лиссажу для

отношения ча­стот 1:2 и

разности фаз π/2

Рис.8. Фигура Лиссажу для отношения частот 3:4

и разности фаз π/2

Наблюдать биения и фигуры Лиссажу можно с помощью электронного осциллографа и звуковых генераторов.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]