- •Случайные величины
- •7. Дискретная случайная величина
- •Числовые характеристики случайной величины Математическое ожидание м(х) дискретной случайной величины
- •Свойства математического ожидания
- •Дисперсия случайной величины
- •Свойства дисперсии случайной величины
- •Биномиальный закон распределения
- •Распределение Пуассона
- •Геометрическое распределение
- •Гипергеометрическое распределение
- •Задачи для самостоятельного решения
- •8. Непрерывные случайные величины. Плотность вероятности
- •Для непрерывной случайной величины
- •Задачи для самостоятельного решения
- •Числовые характеристики непрерывных случайных величин
- •Задачи для самостоятельного решения
- •8.30. Случайная величина х задана плотностью распределения
- •Равномерный закон распределения
- •Задачи для самостоятельного решения
- •Показательный (экспоненциальный) закон распределения
- •Задачи для самостоятельного решения
- •Нормальный закон распределения
- •Задачи для самостоятельного решения
- •9. Закон больших чисел
- •Задачи для самостоятельного решения
- •10. Распределение функции одного и двух случайных аргументов Функция одного случайного аргумента
- •Задачи для самостоятельного решения
- •Функция двух случайных аргументов
- •Задачи для самостоятельного решения
- •Приложения Приложение 1
- •Приложение 2
- •Приложение 3
- •Литература
Случайные величины
7. Дискретная случайная величина
Случайной называют величину, которая в результате испытания примет одно и только одно из возможных значений, наперед неизвестное и зависящее от случайных причин, которые заранее не могут быть учтены.
Обозначают случайные величины буквами Х,Y,Z, а их возможные значения —х,у,z.
Дискретной называют случайную величину, которая принимает отдельные, изолированные друг от друга значения с определенными вероятностями. Число возможных значений дискретной случайной величины может быть конечным или бесконечным, но счетным.
Дискретная случайная величина может быть задана рядом распределения — это соответствие между возможными значениями и их вероятностями:
Х |
… | |||
Р |
… |
,.
События образуют полную группу, следовательно, сумма вероятностей этих событий равна единице:
.
Ряд распределения дискретной случайной величины можно изобразить графически в виде полигона или многоугольника распределения вероятностей. Для этого по горизонтальной оси в выбранном масштабе нужно отложить значения случайной величины, а по вертикальной — вероятности этих значений, тогда точки с координатами будут изображать полигон распределения вероятностей; соединив же эти точки отрезками прямой, получиммногоугольник распределения вероятностей.
Пример 7.1.ПустьХ— дискретная случайная величина, заданная рядом распределения
Х |
–2 |
–1 |
0 |
2 |
4 |
Р |
0,1 |
0,2 |
0,3 |
0,2 |
0,2 |
Построить полигон и многоугольник распределения вероятностей.
Р
. . А4
Р
. . . А0 –1 –2 –3 0 1 2 3 4 5 А1 А2 А3 А5 y А6 0,1 0,2 0,3 x
Точки изображают полигон распределения, а ломаная— многоугольник распределения вероятностей.
Дискретная случайная величина может быть задана функцией распределения. Функцией распределения случайной величины Хназывается функция, выражающая для каждогохвероятность того, что случайная величинаХпримет значение меньшеех:
Функцию иногда называют интегральной функцией распределения.
Если значения случайной величины — точки на числовой оси, то геометрически функция распределения интерпретируется как вероятность того, что случайная величинаХпопадает левее заданной точких (рис. 7.2):
Рис. 7.2
F(x) обладает свойствами:
1. Функция распределения случайной величины есть неотрицательная функция, заключенная между нулем и единицей:
.
Утверждение следует из того, что функция распределения — это вероятность.
2. Функция распределения есть неубывающая функция на всей числовой оси.
3. На минус бесконечности функция распределения равна нулю, на плюс бесконечности равна 1, т.е.
;.
4. Вероятность попадания случайной величины в интервал (включая) равна приращению ее функции распределения на этом интервале, т.е.
.
Числовые характеристики случайной величины Математическое ожидание м(х) дискретной случайной величины
Пусть случайная величина Хможет принимать только значения, вероятности которых соответственно равны. Тогда математическое ожиданиеМ(Х) случайной величиныХопределяется равенством
.
Из определения следует, что математическое ожидание дискретной случайной величины есть неслучайная (постоянная) величина.
Математическое ожидание приближенно равно среднему арифметическому значений случайной величины: .