Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Higher_Mathematics_Part_2

.pdf
Скачиваний:
45
Добавлен:
19.02.2016
Размер:
9.73 Mб
Скачать

where y1 (t), y2 (t), , yn (t) are the unknown functions, t is independent

variable containing system in a normal form or system, which can be obtained concerning derivatives of unknown functions yi (t) , i = 1, 2, , n .

The solution of the system (3.33) on interval ( a, b ) is the set of n of continuously differentiated functions

y1 = ϕ1 (t), y2 = ϕ2 (t), ..., yn = ϕn (t),

which transform each equation of this system into equality.

Cauchy’s test for system (3.33) is to find such a solution, which depends on the initial condition:

y1 (t0 ) = a1 , y2 (t0 ) = a2 , ..., yn (t0 ) = an , where a1 , a2 , ..., an — are the real values.

For solving simultaneous differential equations in normal form we use the following methods:

1)method of eliminating;

2)method of integrated combinations

General form of the method of eliminating. After simultaneous equations differentiating and eliminating all unknown functions yi (x) , except one, we

obtain a differential equation of n order concerning the one function (for example, y1 ). After integration of this equation it is possible to find other

unknown functions.

The meaning of the method of integrated combinations is to make so-called integrated combinations from the equation of the given system with the help of arithmetical operations, that is that the equation concerning some new function

u= u(t, y1 , y2 , .., yn ), which can be easily integrated.

4.2.Euler’s method for solving simultaneous differential equations with constant coefficients

The system of normal linear differential equations with constant coefficients we can name such system

 

dy1

 

 

= a

y

+ a

y

 

 

+ ... + a

y

 

+ f (t),

 

 

2

n

 

11

1

12

 

 

1n

 

 

1

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dy2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= a21 y1 + a22 y2

+ ... + a2n yn

+ f2

(t),

(3.34 )

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dyn

 

 

= a

y

+ a

 

y

2

+ ... + a

 

y

n

+ f

n

(t),

 

 

 

 

 

 

 

 

 

 

n1 1

n2

 

 

nn

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

231

 

 

 

 

 

 

 

http://vk.com/studentu_tk, http://studentu.tk/

where

y1 ,

y2 ,

...,

yn

are

 

unknown

 

 

functions

of

independent

variable

t ; f1 ,

f 2 , ..., fn

are given and continuously on interval (a,b) functions;

aij

are constant

values

(i, j =

 

 

) . If fi (x) 0

 

(i =

 

 

) ,

 

then system

(3.34)

is

1, n

 

1, n

called homogeneous, in other case — right hand member not zero.

 

 

Let’s consider algebraic method of solving linear homogeneous

simultaneous differential equation (generalized Euler’s method).

 

 

For example;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dy1

 

= a

y

 

+ a

y

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.35)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dy2

= a21 y1 + a22 y2 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This system can be written as a single matrix equation as follows;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dY

= AY .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dy1

 

 

 

 

 

 

 

 

a

 

 

a

 

 

 

 

 

 

y

 

 

 

 

dY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

A = 11

 

12

 

, Y

=

1

 

,

 

 

 

 

 

=

 

.

 

 

 

 

 

 

a22

 

 

 

dx

 

 

 

 

 

 

a

21

 

 

 

 

 

y2

 

 

 

 

 

dy2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General solution of the system (3.35) can be written as

 

 

 

 

 

 

 

 

 

y1

 

= C

 

(1)

 

 

+ C

 

 

(2)

 

 

 

 

 

 

 

 

 

 

 

y1

 

 

 

y1

,

 

 

 

 

 

 

 

 

 

 

y

2

 

 

 

 

 

1

 

(1)

 

 

 

 

2

 

(2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y2

 

 

 

 

 

y2

 

 

 

 

 

 

where y(1) , y

(1)

and

y(2) , y

(2)

 

are linear independent partial solutions of the

 

1

2

 

1

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

given system.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Partial solution of the system can be found from

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

= p ekt ,

y

2

= p

2

ekt ,

 

 

 

 

 

 

(3.36)

 

 

 

 

 

1

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where p1 , p2 , k are unknown constants. After substituting of the formula (3.36) in system (3.35) we obtain homogeneous system of linear algebraic equations

concerning the unknown p1

and

p2

of the equations

 

(a11 k) p1 + a12 p2 = 0,

(3.37)

a

 

p

+ (a

22

k) p

2

= 0.

 

21 1

 

 

 

 

The obtained system should be not equal to zero. So,

232

http://vk.com/studentu_tk, http://studentu.tk/

 

 

 

a11 k

a12

 

= 0

,

(3.38)

 

 

 

 

or

 

 

a21

a22 k

 

 

 

 

 

 

 

 

 

 

 

 

 

k2 (a + a )k + a a a a = 0.

 

 

11

22

11

22

12

21

 

This equation is called characteristic equation of the system (3.35).

Let k1 , k2

be different real roots of characteristic equation.

 

 

Then for the root k

we consider its own vector

( p(1) , p(1) )

and partial

 

 

 

1

 

 

 

 

 

 

 

 

1

 

 

2

 

 

solution y(1)

= p(1) ek1t , y(1)

= p(1) ek1t . Similarly for the root

k

2

we consider its

1

1

 

2

2

 

 

 

 

 

 

 

 

 

 

 

 

own vector

( p(2)

, p

(2) ) and partial solution y(2)

= p(2) ek2t ,

y(2)

= p(2) ek2t .

 

1

 

2

 

 

 

 

 

1

1

 

 

 

2

 

 

2

General solutions of the system are:

 

 

 

 

 

 

 

 

 

 

 

 

 

y

= C y(1) + C

2

y(2) ,

y

2

= C y(1) + C

2

y(2)

,

 

 

 

 

 

 

1

1

1

1

 

1

2

2

 

 

 

 

 

In matrix form it can be written as follows:

y1

 

= C

p1(1)

 

k t

+ C

 

p1(2)

 

k

t

.

y

 

 

 

 

e 1

 

 

 

e 2

 

2

1

 

(1)

 

 

 

2

 

(2)

 

 

 

 

 

 

 

p2

 

 

 

 

p2

 

 

 

 

In case when the characteristic equation (3.38 ) has multiple roots, system (3.35) is simpler to solve by eliminated method.

Т.4 Examples of typical problems solving

1. Solve simultaneous equations

 

 

dy

 

 

= 5y + 4z,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dz

 

= 2y + 3z

+ t.

 

 

 

 

dt

 

 

 

Solution. We can solve

this system by the

Differentiating the first equation of the given system:

 

 

d 2 y

 

= 5

 

dy

+ 4

 

dz

 

.

 

 

dt2

 

 

dt

 

dt

 

 

 

 

 

 

 

 

 

 

 

After substituting into obtained system instead of

second equation of the system. We will obtain

 

 

 

 

 

d 2 y

 

=

5

 

dy

 

+ 8y + 12z + 4t.

 

dt2

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

233

 

 

 

 

 

eliminating method.

dzdt its value from the

(3.39)

http://vk.com/studentu_tk, http://studentu.tk/

From the first equation of the system we can find

 

z =

 

1

(

dy

5y)

 

 

 

 

 

 

 

 

 

 

 

(3.40)

4

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

And substituting into equation (3.39) instead of

z the value

1

(

dy

5y)

we

 

 

would obtain linear equation of the second order

 

 

 

 

 

 

 

4

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d 2 y

8

 

dy

+ 7 y

= 4t.

 

 

 

 

 

 

(3.41)

 

dt2

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Make and solve characteristic equation:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k 2 8k + 7 = 0; k = 1, k

2

= 7.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

So the general solution of the corresponding homogeneous equation is

 

 

y = C et

+ C

2

e7t .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Partial solution of right hand member not zero equation (3.41) is

 

 

 

y* = At + B .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After substituting y* into equation (4.41), we would obtain a parity

 

8A + 7(At + B) = 4t,

 

 

 

 

 

 

 

 

 

 

 

 

which can be made when t is initial and in condition of

 

 

 

 

 

 

 

7A = 4,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

32

 

 

 

 

 

 

 

 

 

 

 

 

or

 

 

 

 

 

A =

 

, B =

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

49

 

 

 

 

 

8A + 7B = 0,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In such case general solution of the equation (4.41) has such a form

 

y = C et + C e7t +

4

 

t +

32

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

2

 

 

 

7

 

 

 

49

 

 

 

 

 

 

 

 

 

 

From formula ( 3.40 ) we can find

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z = −C et

 

 

+

 

1

 

C

 

e7t

 

5

t

 

43

.

 

 

 

 

 

 

 

 

 

2

 

 

 

7

49

 

 

 

 

 

 

 

1

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In matrix form the solution of initial system can be written as follows:

y

= C1

 

1

t

+ C2

 

1

7t

 

4t / 7 + 32 / 49

 

 

e

 

 

0.5

e

 

+

5t / 7 43 / 49

.

z

 

 

1

 

 

 

 

 

 

 

2. Find general solution of the system

dx = x2 + xy,

dt

dy = xy + y2 .

dt

234

http://vk.com/studentu_tk, http://studentu.tk/

Solution. Solve this system by the method of integrated combinations. After making the equation we obtain the first integrated combination

 

 

dx

 

+

 

dy

= x2

+ 2xy + y2 ,

 

 

 

dt

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

or

d(x + y)

 

 

 

 

 

 

 

 

=

(x + y)2 ,

 

 

 

 

 

 

 

from where

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d(x + y)

= dt ,

 

1

= t + C .

 

(x + y)2

 

 

 

x + y

1

 

 

 

 

 

After dividing the first equation by the second one we obtain one more integrated combination:

 

 

dx

=

 

x2 + xy

,

 

dx

=

 

x

,

 

dx

=

 

dy

, y = C x .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dy

 

 

 

xy + y2

 

 

dy

 

 

 

 

 

y

 

 

x

 

 

 

y

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From equations

 

 

 

1

= t + C

 

 

 

,

 

y = C x

 

we would obtain the general

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x + y

 

 

 

1

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

solution of the given system:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x =

 

 

 

1

 

 

 

 

 

 

 

, y =

 

 

 

 

C2

 

 

.

 

 

 

(C t)(1+ C

2

)

 

(C t)(1+ C

2

)

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

3. Find the general solution of the system

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dy1

 

 

= 5y

+ 2y

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dy2

 

 

 

= 4y1 + 3y2 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution. We can use generalized Euler’s method. Make characteristic

equation of the system

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 k

2

 

= 0 ,

 

або k 2 8k + 7 = 0 .

 

 

 

 

 

 

 

 

 

 

4

3 k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Roots are k1

= 1 , k2 = 7 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When k

=1 the system

(3.37) is equivalent to one equation

 

 

 

 

 

 

 

 

 

 

4 p1 + 2 p2 = 0 .

 

 

 

 

 

 

Take p1 = 1, then

p2 = −2 . So for root

k = 1 its own vector can be written

(1; 2) . Then y(1) = et

,

y(1)

= −2et

 

are partial solutions of the given system.

 

1

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

235

 

 

 

 

 

 

 

 

 

 

 

http://vk.com/studentu_tk, http://studentu.tk/

When k = 7 from the system (3.37) we can obtain the equation

2 p1 + 2 p2 = 0 , or p1 = p2 ,

 

 

 

which designates its own vector

(1; 1) . Then y(2)

= e7t ,

y(2)

= e7t

are also

 

1

 

2

 

 

partial solutions of the given system.

General solution of the given system can be written as follows

y = C et

+ C

2

e7t , y

2

 

= −2C et

+ C

2

e7t ,

1

1

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

or

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y1

 

= C1

 

1

 

t

+

C2

1

 

7t

.

 

 

 

 

 

e

 

e

 

 

 

y2

 

 

 

 

 

2

 

 

 

 

 

1

 

 

 

 

 

4. Find general solution of the system

 

 

 

 

 

 

 

 

 

 

 

 

 

dy1

 

 

= y

+ y

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dy2

= −2y1 + 3y2 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

Solution. Like in previous example we can use generalized Euler’s method.

Characteristic equation is

 

1 k

1

 

= 0 , it means that k2 4k + 5 = 0

 

 

 

 

2

3 k

 

 

has two complex connected roots

 

k1,2

= 2 ±

 

i . In this case to make the solution

of the given system we need to know just the solution depending on the value k = 2 + i .

When k = 2 + i the

 

system (3.37)

 

can

be transformed

 

into the equation

(1 i) p1 + p2 = 0 . If p1 = 1, then

p2 = 1 + i . So for root 2 + i its own vector

can be written (1;

1+ i)

and partial solution

 

 

 

 

 

 

 

1

(2+i)t

 

 

1

2t

(cos t + i sin t)

=

 

 

Y =

 

e

 

=

 

 

e

 

 

 

1

+ i

 

 

1

+ i

 

e2t .

 

 

 

 

=

 

cos t

e2t + i

 

 

 

 

 

 

 

 

 

 

 

 

 

sin t

 

 

 

Then

cos t sin t

 

 

 

cos t + sin t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y1

 

 

cos t

 

e

2t

+

C

sin t

 

e

2t

 

= C

 

 

 

 

 

2 cos t + sin t

 

y2

1 cos t sin t

 

 

 

 

 

 

is the general solution of the system 5. Solve Coushy’s test

236

http://vk.com/studentu_tk, http://studentu.tk/

dx

= 3x + y,

 

 

 

 

dt

x(0) = 1, y(0) = 0.

 

dy

= − x + y,

 

dt

 

 

Solution. Characteristic equation of the given system can be written as follows

 

3 k

1

 

= 0 ,

 

 

 

1

1 k

 

from where

(3 k)(1k) + 1 = 0 , k2 4k + 4 = 0 , k1 = k2 = 2 .

The own numbers are identical than the solutions of the given system can be found from

x = (α + γt)e2t , y = (β + δt)e2t .

After substitution of this expression into the given system we obtain

γ + 2(α + γt) = 3(α + γt) + β + δt , δ + 2(β + δt) = −α − γt + β + δt .

This equalities can be obtained when t

is any number and when equalities

α − γ + β = 0 , γ + δ = 0 are possible. From here

we can obtain two linear

independent solutions, for example α = 1 ,

β = −1,

γ = δ = 0 і α = 1 , β = 0 ,

γ = 1 , δ = −1.

 

 

So we can write linear independent solutions of the system as:

 

x (t) = e2t ,

x

2

(t) = (1 + t)e2t ;

 

 

 

1

 

 

 

 

 

 

 

 

y (t) = −e2t ,

y

2

(t) = −te2t .

 

 

 

 

1

 

 

 

 

 

 

 

 

General solution of the given system is

 

 

 

x = C e2t + C

2

(1 + t)e2t ,

 

 

y = −C e2t

C

2

te2t .

 

1

 

 

 

 

1

 

 

Determining the

constants C1

and C2 . Taking

 

into account initial

conditions x(0) = 1,

y(0) = 0 , we obtain

 

the system of the equations

C1 + C2 = 1, 0 = −C1 ,

the solutions of which are C1 = 0 , C2 = 1 . So,

x = (1 + t)e2t , y = −te2t – is the solution of Cauchy’s test.

237

http://vk.com/studentu_tk, http://studentu.tk/

 

Tests for general and self-studying

Т.4

 

 

Solve the simultaneous differential equations by the method of integrated combinations

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

dx

 

 

x

 

 

 

 

 

 

 

 

t

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

=

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= ,

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

x(0)

= 2,

 

 

 

 

y

 

 

 

dt

 

 

(x

y)

 

 

 

 

 

x

y

 

 

 

1.

dt

 

 

 

2.

 

 

 

 

 

3.

dt

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

x

 

 

 

 

 

 

 

y

 

 

 

y(0) = 4.

 

 

dy

 

 

 

.

 

dy

 

=

 

 

 

 

.

dy

=

 

 

 

;

 

 

 

 

=−

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

(x y)

 

 

 

 

x + y

 

 

 

 

 

 

dt

 

 

 

 

 

dt

 

 

 

 

 

dt

 

 

 

 

 

 

Solve the simultaneous differential equations by the method of eliminating or generalized Euler’s method

 

dx

 

 

= −3x + y,

 

dx

 

= −

y

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

 

 

 

 

5.

 

 

2

 

 

dt

 

 

 

 

 

dt

 

 

 

 

 

 

dy

 

 

= −20x + 6y.

 

dy

 

= 2x.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

dx

 

 

= x + 4y,

 

dx

 

= 2x + y,

 

6.

 

 

 

 

 

 

7.

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

dy

 

 

= y 3x.

 

 

dy

 

 

= 3x + 4y.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

dx

 

 

= 4x + 6y,

 

dx

 

= y + 2e

t

,

8.

 

 

 

 

 

9.

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

dy

 

 

= 2x + 3y + t.

 

 

dy

 

= x + t 2 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

dx

 

= 2x y,

 

dx

 

= 2x + y + cos t,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10. dt

 

 

11.

dt

 

 

 

 

 

 

 

 

dy

= 2y x 5et sin t.

 

 

dy

 

= − x + 2 sin t.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

dt

 

 

 

 

 

 

Answers

1.

x = C

eC1t2 ,

 

y =

1

 

eC1t2 .

2. x2 y2 = C ,

2x +(x y)2 = C

2

.

 

 

 

 

 

 

2

 

 

 

2C1C2

1

 

 

 

 

t

 

 

2t

 

 

 

 

 

3.

x =

+ 2, y =

+ 4 .

4.

x = C1e2t + C2et , y = 5C1e2t + 4C2et . 5.

x = C1 cost + C2 sin t,

3

3

238

http://vk.com/studentu_tk, http://studentu.tk/

y = 2C sin t 2C

2

cost.

6.

x = et (C cos 2

3t + C

2

sin 2

3t), y =

 

 

3

et (C

2

cos2 3t

 

 

 

1

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

C sin 2

3t). 7.

x = C et

+ C

e5t , y = −C et + 3C

e5t .

8. x = C

+ C

e7t

 

 

(7t + 2)t,

 

 

 

 

1

 

 

 

 

 

 

 

 

1

 

2

 

 

 

1

 

2

 

 

 

 

1

 

 

2

 

49

 

 

 

 

 

 

2

 

 

1

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9. x = C1et +C2et +tet

 

 

 

y = −

 

C1

+

 

 

C2e7t +

 

(14t

2 3t 1).

 

 

 

 

 

 

t2 2,

3

2

49

 

 

 

 

 

 

y = C et C

et + (t 1)et 2t . 10.

x = C et +C

e3t +et (2cost sin t),

 

 

 

 

 

 

 

 

 

1

 

 

2

 

 

 

 

 

 

 

 

 

 

1

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

e3t

+et

(3cost +sin t) . 11.

x =

1

cost (C + (1 + t)C

2

)et ,

y = C et + C

tet 2 cost

sin t

.

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

1

 

 

 

 

 

1

2

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Individual tests

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Т.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Solve simultaneous differential equations by eliminating method. In

every system x = x(t), y = y(t) ,

x = 4x + 3y + t,

y = −2x y.

4.1.3.x = x y + cos 3t,

y = x 3y.

x = x 3y + sin t,

y = x + 5y cos t.

x = −6x 4y + t,

y = 3x + 2y 5.

x = 2x + 2y sin 2t,

y = x + 3y.

4.1.11.x = 4x 5y + e2t ,y = 2x 2y.

4.1.13.x = 2x + 5y,

y = 2y + sin t.

 

 

t

,

4.1.15.

x = 4x y + e

 

+ 2y + 2et .

 

y = x

 

 

 

 

x = dxdt , y = dydt .

4.1.2.x = x 2y + et ,y = x + 4y + 1.

4.1.4.x = x y + t2 1,

y = 5x + 5y 2.

x = −3x y + 2t,

y = − x + 4y t.x = 2x + y + t 2,

y = 3x + 4y + 3.

4.1.10.

 

 

+ e

t

,

x = −2x 5y

 

 

 

y = x + 4y + 2.

 

 

 

 

 

 

 

 

 

 

 

 

t

,

 

 

4.1.12.

x = x y e

 

 

 

 

 

 

 

 

 

 

y = 2x + 3y + 2et .

 

 

 

 

 

 

 

4.1.14.

 

x = − x + 4y,

 

 

 

 

 

 

 

 

 

 

 

y = x + 2y + et .

 

 

 

 

 

 

 

 

 

4.1.16.x = −2x + 5y + 3,y = − x + 2y 4.

239

http://vk.com/studentu_tk, http://studentu.tk/

x = −2x 2y cos t,

y = 4x + 2y + 2.

4.1.19.x = 2x 4y + e2t ,

y = 5x 2y + 4.

4.1.21.x = x y t 2,y = 2x + 3y + 2t.

4.1.23.x = 2x + 3y + sin t,y = −3x + 2y + cos t.

4.1.25.x = −5x + 5y + t2 ,

y = −5x + y + t 4.

4.1.27.x = − x 2y + et ,y = x 3y + t.

4.1.29. x = −3x y e2t ,

y = x y + 1.

x = x + 2y 2t,

y = −5x y + 3t.

4.1.20.x = 6x + 8y + e2t ,y = −2x 2y 3e2t .

4.1.22.x = −3x + 4y + et ,

= − + + t

y 5x 5y 3e .

4.1.24. x = −6x y + et ,

= + − t

y 17x 2y e .

4.1.26.x = 2x + 2y + t2 ,y = −2x 3y.

4.1.28.x = −3x 2y + et ,y = 2x + y.

4.1.30.x = 3x + 17 y + t2 ,y = −2x 3y t.

4.2. Solve the system of linear

homogeneous

differential equations by

dx

= a11 x + a12 y,

 

 

 

 

 

 

dt

 

 

if:

 

Euler’s method

dy

 

 

= a21x + a22 y,

 

 

 

 

 

dt

 

 

 

4.2.1. a11 = 3,

a12 = 1,

a21 = 2,

a22 = 4 .

4.2.2. a11 = 4,

a12 = 1,

a21 = −1,

a22 = 2 .

4.2.3. a11 = 1,

a12 = −1,

a21 = 2,

a22 = 3 .

4.2.4. a11 = 3,

a12 = 8,

a21 = 1,

a22 = 1 .

4.2.5. a11 = 7 ,

a12 = 4,

a21 = −1,

a22 = 3 .

4.2.6. a11 = 2,

a12 = 1,

a21 = −5,

a22 = 4 .

4.2.7. a11 = −2,

a12 = 3,

a21 = 3,

a22 = −2 .

4.2.8. a11 = −5,

a12 = −3,

a21 = 3,

a22 = 1 .

4.2.9. a11 = 2,

a12 = −4,

a21 = 1,

a22 = 2 .

4.2.10. a11 = 2,

a12 = 1,

a21 = 3,

a22 = 4 .

 

 

 

240

 

http://vk.com/studentu_tk, http://studentu.tk/

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]