Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Higher_Mathematics_Part_2

.pdf
Скачиваний:
45
Добавлен:
19.02.2016
Размер:
9.73 Mб
Скачать

1.3.4. y′ − xy = x2ex2 .

1.3.6. (9 x2 ) y′ + 2xy x3 = 0 .

1.3.8. ysin x y cos x = cos2 x .

1.3.10.x2 y′ − y = 1 .

x2

1.3.12. y ′− y ctg x = cos x . sin2 x

1.3.14. (x3 1) y′ − 3x2 y = x 1. 1.3.16. (x4 + 1) y′ − 4x3 y = x.

1.3.18. xy′ + y = x ln x + 2 .

1.3.20. ysin x 3y cos x = sin 2x . 1.3.22. y′ + 2y tg x = tg x + sin x .

1.3.24. (4 + x2 ) y′ + 2xy = 1 .

1.3.26. x2 y′ = e1/ x sin(1/ x) y . 1.3.28. y′− y tg x = cos3 x .

1.3.30. y′ − y sin x = 0.5sin 2x .

1.3.5. y′ − 2xy =

 

xe x2

.

 

x + 1

 

y

 

 

 

1.3.7. y′−

= (x +1)2 .

x 1

 

 

 

 

1.3.9. x2 y′ + y = e1/ x x .

 

 

 

1

 

1.3.11. x3 y′ + y = e2x2 sin 2x.

1.3.13.y′ + 2xy = x sin xex2 .

1.3.15.xy′ + 2y = x x .

1.3.17.y′ + y = ex2 + 1 .

xx3

1.3.19.xy′ − 2y = x2 x + 1 .

1.3.21.xy′ + y = sin x .

1.3.23. y′+ y tg x =1/ cos x .

1.3.25.

y′ −

y

 

= x ln x .

x ln x

1.3.27.

y′+ y ctg x = sin2 x .

1.3.29.

y′− y tg x = cos2 x .

1.4. Solve the Bernoulli’s differential equations.

1.4.1. xy′ − 2y x2 y = 0 . 1.4.2. y ′− y ctg x = y2 .

1.4.3. y′ +

2xy

 

+ y 2 = 0 .

x2 +

 

 

1

1.4.5.

(1+ x2 ) y′ − xy = y2 .

1.4.7.

y′ +

 

y

 

= xy3 .

x

1

 

 

 

1.4.9. xy′ − y = y4 .

1.4.11.

xy′ − y = xy3 .

 

1.4.13.

xy′ + y = xy2 sin x .

1.4.15.

y′ +

y

= y 2 ln 2

x .

 

 

 

x

 

1.4.4.

xy′ − y = x2 y4 .

1.4.6.

(1 x2 ) y′ − xy = x2 y 2 .

1.4.8.

xy′ + 2y = y 2 ln x .

1.4.10. 4xy′ + 3y = −ex x4 y5 .

1.4.12.y (3y′ + 2xy) = x .

1.4.14.( yx2 2) ydx xdy = 0 .

1.4.16.y ′+ y ctg x = y3 cos x .

201

http://vk.com/studentu_tk, http://studentu.tk/

1.4.17.(4 + x 2 ) y′ − 2xy = x / y .

1.4.18.3y 2 y′ − y3 / x = x + 1.

1.4.19.3xy′ − y = (x2 + 1) y2 .

1.4.20.2(1 + x2 ) y′ − 2xy = x / y .

1.4.21.2xy′ + y = x2 y1 .

1.4.22. y′ −

4xy

 

= 2

y (x + 2) .

 

4 + x2

 

 

1.4.23. y′ +

2y

+ 2

y = 0 .

 

x + 1

 

 

 

1.4.24.y′ + 2y = 2 y .

xcos2 x

1.4.25.xy′ + y = y 2 ln x .

1.4.26.3x2 y′ + xy + y2 = 0 .

1.4.27. xy′ − 2y = 2x3 y .

1.4.28.2y′ − y tg x + y3 tg x = 0 .

1.4.29.(1 x2 ) y′ − xy = xy2 .

1.4.30.y′ + xy = y 4 (1 x2 ) .

1.5. Find the general solution and also the particular solution through the point written opposite the equation.

1.5.1.

ysin x = y ln 2 y , y(π / 2) = e .

1.5.2.

y′−2y tg x =sec x , y(0) = 1 .

1.5.3. 2( y x) = (x + 2y) y, y(1) = 0 .

1.5.4. 2y 2 + x 2 x2 y′ = 0 , y(1) = 0 .

1.5.5. y(4 + x 2 ) = 4 + y 2 , y(0) = π / 2 .

1.5.6. (x2 + 4) y′ − 2xy = x ,

y(0) = 1 .

 

 

 

y

 

 

1.5.7. (xy

y) arctg x = x ln x , y(e) = 0 .

 

1.5.8. xy′ = y(1 ln 2

y

) , y(1) = e .

 

 

 

 

 

x

 

1.5.9. 2(1 + e x ) yy′ = e xy2 ,

y(0) = 0 .

1.5.10. y′+ y tg x = cos2 x ,

y(π / 4) = 0.5 .

 

 

 

 

 

 

202

http://vk.com/studentu_tk, http://studentu.tk/

1.5.11. y′− y ctg x =sin 2x cos x ,

 

y(π / 2) = 0 .

1.5.12. y ′+ y tg x = ex cos x , y(0) =

1 .

1.5.13. sin x sin yy′ = cos x cos2

y ,

y(π / 2) = 0 .

1.5.14. y + x2 + y 2 xy′ = 0 ,

y(1)

= 1 .

1.5.15.

y′ = 4 + y / x + ( y / x)2 , y(1) = 2 .

1.5.16.

ysin2 x = y + 1, y(π / 4) = 1.

1.5.17.

(x2 + y2 )dy 2xydx = 0 , y(1) = 2 .

1.5.18.

ycos2 x = y , y(π / 4) = e .

1.5.19.2yy ′ = ( y2 1) ctg x , y(π / 2) = 0 .

1.5.20.tg ydx x ln xdy = 0 , x(π / 2) = e .

1.5.21. xy′ − y / x = 1/ x ,

y(1) = 0 .

1.5.22. y′ =

y x

,

y(1) = 0 .

 

 

 

 

 

 

 

 

y + x

 

 

 

 

 

 

1.5.23.

y′ =

 

y

+

 

 

x

 

,

y(1)

= 1 .

 

x

 

 

+ x2

 

 

 

 

 

1

 

 

 

 

1.5.24.

y′ =

 

 

2y 2

y(1) = 1 .

 

 

,

 

y 2 + x2

1.5.25.

y′ + 3x2 y = 3x5 ,

y(0)

= 1 .

1.5.26. (x + y) y′ = y 2x , y(1) = 0 .

1.5.27. xy′ = y(1 + ln

y

) , y(1) = ee .

 

 

x

 

1.5.28. x2 y′ − y 2 = 1 , y(1) = 0 .

1.5.29. (x2 + 1) yx tg y ,

y(0) = π / 6 .

1.5.30. yy′ + xey2 = 0 ,

y(1) = 0 .

1.6. Solve the exact differential equations.

1.6.1.(4x3 y3 + 3x2 y 2 + 2xy)dx + (3x4 y 2 + 2x3 y + x2 )dy = 0 .

1.6.2.(4x3 y 2 + 3x2 y + 2x)dx + (2x4 y + x3 + 2y)dy = 0 .

1.6.3.(ln x + 2xy 2 )dx + (2x2 y + ln y)dy = 0 .

1.6.4.(cos x sin y + xe x )dx + (sin x cos y + ye y )dy = 0 .

1.6.5.(ln x + y)dx +(ln y + x)dy = 0 .

1.6.6.(arctg x +ln y)dx +( y /(1+ y2 ) + x / y)dy = 0 .

203

http://vk.com/studentu_tk, http://studentu.tk/

1.6.7.

(2x sin y + 3x2 )dx + (x2 cos y + 1/ y)dy = 0 .

1.6.8.

(3x2e y +

x )dx + (x3e y + y3 )dy = 0 .

 

 

1 + x2

1.6.9.( y + sin x cos2 x)dx + (x + cos y sin3 y)dy = 0 .

1.6.10.(2x cos(x2 + y2 ) + x2 )dx +(2y cos(x2 + y2 ) + y)dy = 0 .

1.6.11.(x( y +2)exy +2x)dx +(2x + x2 exy )dy = 0 .

1.6.12.( y cos x +cos y)dx +(sin x x sin y +2y)dy = 0 .

1.6.13.(2x sin y +4x3 )dx +(x2 cos y sin y)dy = 0 .

1.6.14.

(y x

1+ x2 )dx +(y

y2 1 + x)dy = 0 .

1.6.15.

(2xe x2 + y + cos x)dx + (e x2 + y sin y)dy = 0 .

 

2x 1

 

cos

y

 

2

 

 

 

 

 

 

 

 

 

1.6.16.

 

+2xy dx +

 

 

 

+ x

 

dy = 0 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

1+x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.6.17.

 

cos(ln x) + ln y

dx +

ln x sin(ln y)

dy = 0 .

 

 

 

 

 

 

 

x

 

 

 

 

y

 

 

 

1.6.18.(exy + y2 +3x2 )dx +(2xy exy )dy = 0 .

1.6.19.(2xex2 +y2 +3x2 )dx +(2 yex2 +y2 3y2 )dy = 0 .

1.6.20.(4x3 y2 +2xy3 )dx +(2yx4 +3x2 y2 +4y3 )dy = 0 .

1.6.21.(3x2 y + y2 +2x)dx +(x3 +2xy)dy = 0 .

1.6.22.(sin x + y)dx + ( y cos y2 + x)dy = 0 .

1.6.23.(ln x + ex+ y )dx + (ex + ey )ey dy = 0 .

1.6.24.(2xey + y3ex +2)dx +(x2 ey +3y2 ex )dy = 0 .

1.6.25.(x1 +2xy2 )dx +( y1 +2x2 y)dy = 0 .

1.6.26.(4x3 sin y + 2x cos y)dx + (x4 cos y x2 sin y)dy = 0 .

1.6.27.(y 2 + 3x 2 y 4 + 2x)dx + (2xy + 4x3 y3 3y 2 )dy = 0 .

 

 

 

 

x

 

1.6.28.

 

y

 

 

 

 

 

+ln y +2x dx + ln x +

 

+2y dy = 0 .

 

 

 

 

y

 

 

 

 

x

 

 

 

 

 

3

 

 

 

 

2

 

 

 

x

 

 

y

 

 

 

 

 

 

 

 

 

 

 

1.6.29.

 

 

 

 

 

 

 

 

dy = 0 .

 

 

 

+ y dx + x

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

3

 

 

 

1x

 

 

1y

 

 

 

 

 

 

 

1.6.30.

(sin2 x +2xy2 )dx +(2x2 y cos2 y)dy = 0 .

 

 

 

 

 

 

 

204

 

 

http://vk.com/studentu_tk, http://studentu.tk/

Topic 2. Differential equations of order higher than the first

Main concepts and the definitions. Reduction of order by substitution. Absence of the dependent variable. Absence of the independent variable. Homogeneous linear equation with constant coefficients.

Literature: [2, ch. 3], [3, ch. 8, § 2], [4, section 8, § 26], [6, section 11], [7, ch. 11, § 11.2, 11,3], [8, section 13, §§16—18], [10, §3].

Т.2

Main concepts

2.1. Main concepts and definitions

The general form of a n – order differential equation is

F(x, y, y, y′′,..., y(n) ) = 0 .

When a differential equation is solvable for y(n), it may be written in the form

y(n) = f (x, y, y,..., y(n1) )

(3.18)

There are n constants C1 ,C2 ,...,Cn in the most general solution of the n – order differential equation:

y= ϕ (x, C1 ,C2 ,...,Cn ) or Ф(x, y, C1 ,C2 ,...,Cn ) =0.

2.2.Reduction of Order by Substitution

Certain types are readily solvable. One method of attack is to make such a substitution as to reduce the order and then try to solve the result. For example, consider the equation

y(n) = f (x),

where f (x) is a given continuous function. To solve this, substitute p for and obtain

(n)

 

d n y

 

d

d n1 y

 

dp

 

y

=

 

 

=

 

 

 

 

 

 

=

 

= f(x).

 

n

 

 

 

 

 

 

 

dx

 

 

 

n1

 

dx

 

Therefore

 

 

 

dx dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

n1

 

 

p = f(x) dx + C1, or

 

y

= f(x) dx + C1.

 

 

n1

 

 

 

 

 

 

 

 

 

dx

 

 

 

Clearly we can treat equation (3.19) in a similar manner and obtain

d

n2

 

 

y

= (f (x) dx) dx + C1x + C2,

dx

n2

 

 

 

 

 

205

d n1 y

dxn1

(3.19)

http://vk.com/studentu_tk, http://studentu.tk/

And it appears that we may continue this process until we find y in terms of x by n successive integrations:

y =

 

x n1

f (x)dxdx + C1

 

+ …+ Cn1 x + Cn .

(n 1)!

n

n

 

 

 

 

 

Various types of differential equations with appropriate substitution will be considered in the following articles (see table 3.1).

 

 

 

 

Table 3.1

 

 

 

 

 

Equation of the

Characteris-

Substitu-

The second

Equation of the

second order

tics of

tion

derivative

first order

 

equations

 

 

 

 

Dependent

 

 

 

F(x, y, y′′) = 0

variable y

y ′ = z(x)

y ′′ = z

F(x, z, z) = 0

 

absent

 

 

 

 

 

 

 

 

 

Independent

 

 

F ( y, p, pp) = 0

F( y, y, y′′) = 0

variable x

y ′ = p( y)

y′′ = pp

or

 

absent

 

 

Ф( y, p, p ) = 0

 

 

 

 

 

 

 

 

 

Consider other types of differential equations with appropriate substitution for reduction of order:

1) a differential equation

F(x, y(k) , y(k +1) , ..., y(n) ) = 0,

which does not contain y directly and derivatives of order less than ( k 1 ) using the substitution y(k) = z(x) . After substituting, we have

F(x, z, z, ..., z (nk) ) = 0 ,

where order is ( n k );

2) a differential equation

F( y, y, ..., y(n) ) = 0,

which does not contain independent variable x . It can be a lesser order of times one with substituting the new function:

y= p(y),

where p(y) is a new function of y. Thereafter

 

′′

 

dp( y)

 

dp dy

 

′′′

 

d( pp)

 

d( pp)

 

dy

′′

2

) p ,… .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

=

dx

= dy dx

y

=

dx

=

dy

dx

 

= p p;

 

= ( p p + ( p )

 

It can be expressed that the order of times one is less as well.

 

 

 

Consequently,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ф( y,

p,

p, ...,

p(n1) ) = 0 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

206

 

 

 

 

 

 

 

http://vk.com/studentu_tk, http://studentu.tk/

2.3. Linear differential equations of the order higher than the first

The linear differential equation of the n’th order

 

 

a (x) y(n) +a (x) y(n1)

+...+a

n

(x) y = f (x),

 

( 3.20 )

 

 

0

1

 

 

 

 

where

a0 (x), a1 (x), ...,

an (x), f (x)

are the

given functions,

moreover

a0 (x)

0 is called linear differential equation of order n, since each term is of

the first degree in the form of y and contains its derivatives, but does not include their products.

An equation (3.20) if f (x) 0 is called right-hand member not zero. If f (x) 0 as shown,

 

a

0

(x) y(n) + a (x) y(n1) + ... + a

n

(x) y = 0

(3.21 )

 

 

1

 

 

 

it’s called homogeneous.

 

 

 

 

 

Properties of the linear homogeneous differential equation

1. If

y1 is a particular solution

of (3.21) then C1 y1 ( C1 = const) is a

particular solution of (3.21) too.

 

 

 

 

2. If

y1 , y2 are the particular solutions of (3.21) then the sum of

y1 + y2

and a linear combination C1 y1 + C2 y2

are the solutions of (3.21).

 

In general case: if

 

y1 , y2 , ..., yn are the particular solutions of (3.21) then

we are having linear combination

 

 

 

 

y = C1 y1 + C2 y2 + ... + Cn yn

is the solution of (3.21).

There are linear dependent and independent systems of the functions.

System of

the

functions y1 (x), y2 (x), ..., yn (x)

is called a

linear

dependent on the range (a, b), if an identity

 

 

 

 

 

 

α1 y1 + α 2 y2 + ... + α n yn 0 ,

 

 

(3.22)

where α1 , α 2 , ..., α n are real numbers, exists if and only if

 

 

 

 

α1 2 =... n

= 0.

 

 

 

If at least one of the terms among

α1 , α 2 , ..., α n is not equal to zero and

the identity (3.22)

exists, then

the

functions y1 , y2 , ..., yn

are

linear

independent

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For instance

the

functions

y1 = sin2 x,

y2 = cos2 x,

y3 = 1

are

linearly

dependent, when

α1 = 1, α 2 = 1, α 3 = −1 exists an identity

 

 

 

sin 2 x + cos2 x 1 0,

x (−∞; ).

 

 

 

 

 

 

207

 

 

 

 

http://vk.com/studentu_tk, http://studentu.tk/

In order to determine whether a system of functions y1 , y2 , ..., yn is linearly dependent or it is not, the Vronsky determinant is used.

 

 

y1

W[ y1, y2

,..., yn ] =

y

1

...

 

 

 

 

y(n1)

 

 

1

For functions y1 (x), y2 (x), ...

, yn (x)

y2

...

yn

 

y

...

y

 

2

 

n

.

...

...

...

 

y2(n1)

...

yn(n1)

 

continuous within the interval (a, b),

as well as their derivatives up to the (n–1)-th order, to be independent within a given interval, it is necessary and sufficient for the Vronsky determinant not to be equal to zero in at least one point of this interval.

An arbitrary system with n linearly independent solutions of the homogeneous equation (3.21) is referred to as a fundamental system.

If y1 , y2 , ..., yn is a fundamental system of equation (3.21), the

general solution of the latter has the form:

_

y = C1 y1 + C2 y2 + ... + Cn yn , where C1 , C2 , ..., Cn are arbitrary constants.

The general solution of the non-homogeneous equation (3.20) can be written in the form:

y = y + y ,

where y is the general solution of the corresponding homogeneous equation (3.24),

y is a partial solution of the non-homogeneous equation (3.20)

 

Т.2

Typical problems

 

 

1. Find the general solution

 

 

y′′′ = e2x + sin x.

Solution. By n successive integrations, we get

y ′′′ =

dy ′′

= e

2x

+sin x ,

y′′ =

(e

2x

+sin x)dx =

1

 

e

2x

cos x +C1

,

dx

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

2x

 

 

 

 

 

1

 

2x

 

 

 

 

 

 

 

 

 

 

 

y′ = y′′dx =

 

e

 

cos x + C1 dx =

 

 

e

 

sin x

+ C1 x + C2 ,

 

 

2

 

4

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

C1

 

 

 

 

y = ydx =

 

2x

 

 

 

 

 

 

 

 

 

2x

 

 

 

 

 

2

 

 

 

 

 

e

 

sin x + C1 x +C 2

dx

=

 

 

e

 

 

+ cos x +

 

 

 

 

x

 

+ C2 x + C3

,

4

 

8

 

 

 

2

 

 

where C1 , C2 , C3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are any constants.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

208

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://vk.com/studentu_tk, http://studentu.tk/

2.

Solve

 

 

 

 

 

 

 

 

 

 

 

 

y′′(1+ x2 ) = 2xy.

 

 

 

 

 

 

Solution. The given equation contains derivatives of the dependent variable

y but does not contain y directly, then the substitution

y′ = z(x) (see table 3.1).

Then

y′′ = zand we obtain

 

 

 

 

 

 

 

 

 

 

 

 

z(1 + x2 ) = 2xz.

 

 

 

 

 

 

Separating the variables in the equation and integrating, we have

 

 

dz

(1+ x2 ) = 2xz ,

dz

=

 

2x

 

dx ,

 

 

 

dx

z

1

+ x2

dy

 

 

 

ln | z | = ln(1+ x2 ) + ln | C | , z =C (1+x2 ) ,

= C (1+ x2 ) ,

 

 

 

1

1

 

 

 

 

 

dx

1

 

 

 

 

 

 

 

x3

 

 

 

 

y = C1 (1 + x2 )dx = C1 (x +

) + C2

 

 

 

 

is general solution of the given equation.

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

Solve

 

 

 

 

 

 

 

 

 

 

 

 

(y)2 + 2yy′′ = 0.

 

 

(3.23)

Solution. An equation does not contain x , directly, the substitution

y′ = p( y) , y′′ = p dpdy

will give a new differential equation in p and y of order lesser than the original equation

p2 + 2yp

dp

= 0;

p( p + 2y

dp

) = 0 ,

dy

 

 

 

 

dy

thereafter, the following two cases: 1) p = 0 , dydx = 0 , y =C ;

2) p +2y

dp

= 0 ,

 

1

 

 

dy

+

dp

= 0 ,

1

ln

 

y

 

+ln

 

p

 

 

= ln C ,

 

 

 

 

 

 

 

 

dy

2

 

 

y p

2

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

y p =C1 , y

dy

 

 

= C1 ,

ydy = C1dx ,

 

 

2

y

 

 

 

 

 

2

= C1 x + C2

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

is general solution of the original equation (3.23).

Particular, that solution y =C is proceeded from the general solution, if C1 = 0 .

4. Solve

y′′′−(y′′)2 =0 .

209

http://vk.com/studentu_tk, http://studentu.tk/

Solution. An equation is of order 3 and does not contain x and y, directly,

and it depends on y.

The substitution

is

necessary, as follows

y ′′(x) = z(x) or y′ = p( y) .

It’s suitable to use

this

substitution y ′′(x) = z(x)

.Eventually we would obtain the resultant equation in the form of First order, as follows; z ′−z2 = 0 .

Then we have:

dz

= z2 ,

dz

= dx ,

1

= x +C , z =

1

 

 

, y′′ =

1

;

dx

z2

z

1

 

 

x C1

 

x C1

 

 

 

 

 

 

y′ =

1

dx =−ln

 

x +C1

 

+C2 ;

 

 

 

 

 

 

 

 

 

 

x C

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

y = (ln x +C1 +C2 )dx =−(x +C1 ) ln x +C1 +C2 x +C3

Is the general solution of the given equation ( C1 , C2 , C3 –constants)

 

Т.2

 

 

 

 

 

 

Self-tests and class assignments

 

 

 

 

Evaluate the following equations:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.

y′′′ =

1

.

 

 

 

 

 

 

 

 

 

 

2. y′′′ = 27e3x + 120x3 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

y′′′ = e5x cos x .

 

 

 

 

 

 

4.

y′′′ = sin 2x + cos x .

5.

y′′′ = e x + x .

 

 

 

 

 

 

 

 

6.

y′′′ = x2 + cos3x .

 

7..

y′′ = ln x + x .

 

 

 

 

 

 

 

8.

y′′ = 5x + 6x .

 

 

 

 

9.

y′′′ = 3x + cos x .

 

 

 

 

 

 

10.

y′′′ = 4x + cos 3x + sin 5x .

11.

x

2

 

y

′′

+ xy

= 1 .

 

 

 

 

 

 

12.

 

′′

x

+ 1)+ y

= 0 .

 

 

 

 

 

 

 

 

 

 

y

(e

 

 

13. (1x2 )y′′ − xy′ = 2 .

 

 

 

14.

y′′ = 5y.

 

 

 

 

 

15.

 

′′

 

 

 

 

 

 

2

+ y

.

 

 

16.

y

′′

+

(y

2

= 2e

y

.

y (1+ y) = (y )

 

 

 

 

 

)

 

 

17.

y3 y′′ = −1.

 

 

 

 

 

 

 

 

18.

yy′′ = (y)2 .

 

 

 

 

19.

y′′ =

1 .

 

 

 

 

 

 

 

 

 

20.

y′′ = 10e y .

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Find out the linear dependency of the given system of functions

21.

y

= 1, y

2

= sin 2 x, y

3

= cos 2x .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22.

y

 

 

= x2 x + 3,

y

2

= 2x2

+ x, y

3

= 2x 4 .

 

 

 

 

 

 

 

23.

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y1 = x + 2,

 

y2

= x 2 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

210

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://vk.com/studentu_tk, http://studentu.tk/

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]