Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Higher_Mathematics_Part_2

.pdf
Скачиваний:
45
Добавлен:
19.02.2016
Размер:
9.73 Mб
Скачать

Answers

1. y =

x 2

 

 

ln x

x 2

+ C

 

 

 

x 2

+ C

2

x + C

3

.

 

 

 

 

 

2. y = e3x + x6 + C + C

2

x + C

3

x2 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

4

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

3. y

=

 

1

 

e5x + sin x

+ C

 

 

x2

+ C

2

x

+ C .

 

 

 

 

 

 

4.

y =

1 cos2x sin x + C

 

x2

+ C

2

x + C .

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

125

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

3

 

 

 

 

 

5. y = ex +

 

x4

+ C

x2

+ C

2

x + C

. 6. y =

x5

 

 

 

1

sin 3x + C

x2

 

+ C

2

x + C .

7. y =

x2

ln x

 

 

 

 

 

 

 

 

 

 

 

 

24

 

 

1

2

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

60

 

 

 

27

 

 

 

 

 

1

 

2

 

 

 

 

 

3

 

 

 

 

2

 

 

 

 

 

x2

 

+

x3

 

 

+ C x + C

 

 

.

8.

y =

 

 

 

5 x

 

+ x3 + C x + C

 

 

.

 

9.

y =

 

3x

 

sin x + C

 

x2

+

 

 

 

 

 

 

 

 

(ln 5)2

 

 

 

(ln 3)3

2

 

4

 

 

6

 

 

 

 

 

1

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

2

 

 

 

 

 

 

 

 

 

 

 

1

 

 

+C x + C .

 

10. y =

 

 

 

4x

 

1

sin3x +

 

 

1

 

 

cos5x + C

 

x2

 

+ C x + C .

 

 

 

11.

y =

ln2 x

 

+

2

 

 

3

 

 

 

 

 

 

 

 

 

 

 

(ln 4)3

 

 

27

 

 

 

 

125

 

 

 

 

 

 

1

2

 

 

 

2

 

 

 

3

 

 

 

 

 

 

 

 

 

 

2

 

 

+C1 ln x + C2 .

 

 

 

 

 

 

12.

 

 

y = C1 (x ex )+ C2 .

 

 

13.

 

y = arcsin2 x +C1arcsin x + C2 .

14.

 

 

 

y = C e5x

+ C

2

 

.

 

 

 

 

15.

 

ln

 

C ( y + 1) 1

 

= C (x + C

2

 

), C 0;

y = C ;

 

 

y = − x + C .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

16.

 

e y + C

= (x + C

2

)2

.

17.

 

 

 

1+ C y 2

= C x + C

2

.

18.

 

y = C

2

eC1x . 19. x + C

=

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

20e y + C

1

 

C

 

 

 

 

 

 

 

 

 

 

=

(

 

 

 

y 2C )

 

 

 

y + C

 

 

 

).

 

 

20. x + C

2

=

 

ln

 

 

 

 

 

 

 

 

 

 

 

 

 

1 .

21.Linear

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C1

 

 

 

 

 

20e y + C

 

+

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

dependency.

22. Linear dependency 23.

 

 

Linear independency .

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Individual tasks

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Т.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1. Integrate the given equations of the second order

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.1. y′′ =

 

sin x

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.2. y′′(4 + x2 ) = 2 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos2 x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.3. y′′ = 4cos2 x .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.4. y′′ = 2x arctg x .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.5. y′′

1 x2

+ x = 0 .

 

 

 

 

 

 

 

 

 

 

 

 

2.1.6.

 

y′′ = arctg x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.7.

 

y′′ = xex .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.8. y′′

1 x2

= 1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.9. y′′ = x ln x .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.10. y′′ = x sin 2 x .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.11. y′′(1 x2 ) = x3 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.12. y′′ = 3x2 + ln x .

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.13. y′′

 

x2 1 = x .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.14. y′′ = x sin 2x .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.15. y′′ = 6x arctg x .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.16.

 

 

y′′ = sin3 x .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.17. y′′ = cos3 x .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.18. y′′ = xe2x .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.19. y′′ = 4 sin 2 x .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.20. xy′′ = 1 + x2 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

211

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://vk.com/studentu_tk, http://studentu.tk/

2.1.21.

y′′ 1+ x = x .

2.1.22.

y′′ = x x 1 .

2.1.23.

y′′ cos3 x = sin x .

2.1.24.

y′′ = ex (x + 1) .

2.1.25.

y′′ = x + ln x .

2.1.26.

y′′ = cos4 x .

2.1.27.

x2 y′′ = ln x .

2.1.28.

y′′ = (x + 3)e x .

2.1.29. (x 1)2 y′′ = x2 2x .

2.1.30. 2 x ( x + 1)2 y′′ = 1 .

2.2. Integrate the following equations using substitution y′ = z(x)

2.2.1. (9 + x2 )y′′ + 2xy′ = 0 .

2.2.2. xy′′ = y′ + x .

2.2.3. y′′ − 2yctg x = cos x .

2.2.4. y′′(x2 + x) = (4x + 2) y.

2.2.5. y′′ − 2 ctg x y′ = sin3 x .

2.2.6. (2 + x2 )y′′ + 2xy′ = x2

2.2.7. xy′′ + x( y)2 2y′ = 0 .

2.2.8. y′′ sin x ycos x = sin x .

2.2.9. xy′′ − y′ = e x x2 .

2.2.10. y′′ + 4(tg x)y′ = cos2 x .

2.2.11. xy′′ + y′ = ( y)2 .

2.2.12. xy′′ = y′ + x3 .

2.2.13. y′′x ln x = y.

2.2.14. y′′ + 2(tg x)y′ = cos3 x .

2.2.15. y′′ − 2xy′ = 4x .

2.2.16. xy′′ − y′ = x2 cos x .

2.2.17. y ′′−2 y ctg x = 0 .

2.2.18. xy′′ = y′ + xex .

2.2.19. (x2 + 1)y′′ = 2x( y′ + 1) .

2.2.20. xy′′ = y′ + x2 sin x .

2.2.21. (x2 + 1) y′′ = 4x( y′ −1) .

2.2.22. x(ln x + 2) y′′ = y.

2.2.23. xy′′ = yln(y/ x) .

2.2.24. (1x2 ) y′′ = 2xy.

2.2.25. xy′′ = y′ + x2 .

2.2.26. (1 + x2 ) y′′ = 2xy.

2.2.27. xy′′ + y′ = x .

2.2.28. y′′ − 2(tg x) y′ = cos x .

2.2.29. x2 y′′ + xy′ = 1.

2.2.30. y′′ − y/(x 1) = x2 x .

2.3. Integrate the following equations using substitution y′ = p( y) .

2.3.1.

yy′′ = ( y)2 .

2.3.2. 2yy′′ + ( y)2 = 0 .

2.3.3. yy′′ = 2y′ + ( y)2 .

2.3.4. yy′′ + 2( y)2 = 0 .

2.3.5. yy′′ − 2( y)2 = 2y3 y.

2.3.6. y3 y′′ + 2y′ = 0

2.3.7. yy′′ = 3(y)2 .

2.3.8. y′′ = ( y)2 + 2y.

2.3.9.

y′′y3 = 2y.

2.3.10. 33 y2 y′′ = y.

2.3.11. y′′ = 2yy.

2.3.12. 2y 2 y′′ = y.

2.3.13. y3 y′′ = 6 .

2.3.14. y2 y′′ = y.

 

 

212

http://vk.com/studentu_tk, http://studentu.tk/

2.3.15. y′′ − 2yy′ = 0 .

2.3.16.

y′′ = y′ + (y)3 .

2.3.17. 4 y y′′ = 1 .

2.3.18.

2yy′′ − ( y)2 = y.

2.3.19. yy′′ + (y)2 + 1 = 0 .

2.3.20. 2yy′′ + ( y)2 + y′ = 0 .

2.3.21. yy′′ = 2(y)2 ( y)3 .

2.3.22. y′′ = 2y( y + 1) .

2.3.23. yy′′ − ( y)2 = y 2 y.

2.3.24. yy′′ − 2yyln y = ( y)2 .

2.3.25. 3y′′ = y 5 / 3 .

2.3.26. yy′′ = 2(y)2 + y

2.3.27. y′′ = ( y)2 + y.

2.3.28. y′′y3 + 9 = 0 .

2.3.29. y′′ + (y)2 = 2ey .

2.3.30. y′′( y + 1) = ( y)2 + y.

Тopic 3. Linear differential equation with constant coefficients

Linear differential equation with constant coefficient Euler’s method. Non-homogeneous linear equations with constant coefficients. Method of independent coefficients and method of variation of arbitrary constants (Lagrange’s method).

Literature: [2, chapter 3, sec. 3.3], [3, chapter. 8, §4], [4, chapter 8, § 26], [6, chapter 11, sec.11.3, 11.4], [8, chapter 13, §§21—28], [10, §§4—5].

Т.3

Main theoretical information

3.1. Homogeneous linear equations

Homogeneous linear equation of the n’th order with constant coefficients is written below

 

a

y(n) +a y(n1)

+...+a

 

y

+a y = 0,

(3.24)

 

0

1

n1

 

n

 

where a0 , a1 , , an

— any real numbers, a0

0 .

 

General solution of homogeneous linear equation:

 

 

 

y =C1 y1 +C2 y2 +...+Cn yn ,

 

where y1 , y2 , ..., yn — linearly

independent

particular

solutions of the

homogeneous equation (3.24), C1 , C2 , ..., Cn — any constants.

Euler’s method. Particular solution of the equation (3.24) is evaluated in the form y = ekx , where k — unknown constant. Using the substitution, we will have:

ekx (a0 kn +a1kn1 +...+an1k +an ) = 0 , 213

http://vk.com/studentu_tk, http://studentu.tk/

Therefore

a kn +a kn1

+...+a

n1

k +a

n

= 0.

(3.25 )

0

1

 

 

 

 

Equation (3.25) is called Auxiliary equation. This equation is obtained from (3.24) with the help of substitution of the derivatives of the evaluating function by using the powers of k and y equals to one. It means:

y(n) kn , y(n1) kn1 , ..., y′ → k, y 1 .

Auxiliary equation (3.25) is algebraic one of the nth order and has n number of roots (real or complex). A particular solution of the equation (3.24) depends on the roots of the auxiliary equation (3.25). Correspondence between roots of the auxiliary equation and the particular solutions are given in table 3.2.

 

 

 

 

 

 

 

 

 

Table 3.2

 

 

 

 

 

 

 

 

 

 

Characteristic of the root

The number of the

 

 

 

Particular solutions which

 

linear independent

 

 

 

 

 

in the Auxiliary equation

solutions which

 

 

 

corresponds to the given root

 

 

 

corresponds to the

 

 

 

 

 

 

 

 

given root

 

 

 

 

 

1

 

k – real simple root

 

one

 

 

 

ekx

 

 

divisible by 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

k – real simple root

 

m

 

 

 

ekx , xekx ,

..., xm1ekx

 

divisible by m

 

 

 

 

3

 

k =α±βi – pair of

 

two

 

 

 

eαx cos βx, eαx sin βx

 

complex compared

 

 

 

 

 

 

simple roots

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k =α±βi – Pair of

 

 

 

 

 

eαx cos βx, eαx sin βx,

4

 

complex compared

 

2m

 

 

 

,

 

simple roots divisible

 

 

 

 

 

 

by m

 

 

 

xm1eαx cosβx,

xm1eαx sin βx

 

 

 

 

 

 

 

 

Let’s consider the equation of the second order

 

 

 

 

 

a0 y′′ + a1 y′ + a2 y = 0 .

 

(3.26)

 

Its auxiliary equation has the following structure

 

 

 

 

a k2

+a k +a

2

= 0 .

 

(3.27)

 

 

 

0

1

 

 

 

 

 

Dependent on the denominator D = a2 4a a

2

we have 3 such conditions,

 

 

 

 

1

 

0

 

 

according to table 3.3.

214

http://vk.com/studentu_tk, http://studentu.tk/

 

 

 

 

 

 

 

 

 

Table 3.3

 

Roots of the auxiliary equation ( 27 )

General solution of the equation

k1

and k2 – real and different

y = C ek1x

+ C

2

ek2x

 

 

 

 

1

 

 

 

 

 

 

k1

and k2 – real and equal

y = ek1x (C

1

+ C

2

x)

 

 

 

 

 

 

 

 

 

 

k1 = α + βi , k2 = α − βi – complex roots

y = eαx (C

 

cos βx + C

2

sin βx)

 

 

1

 

 

 

 

 

3.2. Nonhomogeneous linear equation

The following equation:

 

a

y(n) +a y(n1)

+...+a

y′+a y = f (x),

 

(3.28)

 

0

1

n1

n

 

 

where a0 , a1 , ..., an

— constants,

f (x) — continues on (a,b)

function is a

linear nonhomogeneous differential equation with constant coefficients.

General solution of non homogeneous equation (3.28) looks like the following

y = y + y ,

where y is the general solution of the corresponding homogeneous equation

(3.24), y is a particular solution of the nonhomogeneous equation (3.28). General solution of y equation (3.24) is considered before.

To find particular solution of the equation (3.28) such methods are used:

1)independent coefficients;

2)variation of any constants (Lagrange method).

3.2.1.Method of independent coefficients

This method is used for evaluating linear equations with constant coefficients and right part of the special form

f (x) = eαx (P (x) cos βx +Q (x) sin βx)

,

(3.29)

n

m

 

 

or which is the sum of functions of the same type. Here α and β are constants,

Pn (x) and Qm (x)

are given binomial

of the

variable x

powered

correspondingly by n

and m . Let’s name

number

 

z =α+βi

auxiliary

(control) number of the right part of the equation.

Particular solution of the equation (3.28) with right part (3.29) is evaluated as follows:

 

 

 

y* = xr eαx (P (x) cos βx +Q (x) sin βx)

,

 

 

 

 

 

 

l

 

l

 

 

 

 

 

 

where P (x) A xl + A xl1 + ... + A ,

Q (x) B

0

xl + B xl1

+ ... + B

are

l

0

 

1

l

l

1

 

l

 

binomial of the order

l = max(n, m)

with independent coefficients A0 ,

A1 , ...,

Al ,

215

http://vk.com/studentu_tk, http://studentu.tk/

B0 , B1 , ..., Bl ; r is divisible by roots z = α + βi in the auxiliary equations (3.25). If z is not the root of the auxiliary equation, then r = 0 .

For some graphs of functions f (x) particular solutions are evaluated in such a form (tаble 3.4):

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.4

View of the right side

Control number of the right

Structure of the particular

 

 

( f (x) )

side ( z )

 

 

 

solution ( y* )

 

 

 

 

 

 

1.1

 

 

e

αx

z = α – is not the root

 

 

 

 

Ae

αx

 

 

 

 

 

 

of the auxiliary equation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2

 

 

e

αx

z = α – the root of the

 

 

 

 

Ax

r

e

αx

 

 

 

 

 

 

auxiliary equation r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1

 

 

Pn (x)

z = 0 – is not the root

 

 

Pn (x) A0 x

n

+

 

 

 

 

 

of the auxiliary equation

 

 

 

 

 

 

 

 

 

 

 

+ A xn1

+ ... + A

2.2

 

 

Pn (x)

z = 0 – the root of the

 

 

 

1

 

 

 

 

n

 

 

 

 

 

 

x r P (x)

 

 

 

 

 

 

 

 

 

 

 

~

 

 

 

 

 

 

 

 

 

auxiliary equation

 

 

 

 

 

n

 

 

 

3.1

 

 

P (x)e αx

divisible by r

 

 

 

 

P (x)eαx

 

 

 

z = α – is not the root of

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

~

 

 

 

 

 

3.2

 

 

n

 

the auxiliary equation

 

 

 

 

n

 

 

 

 

 

 

 

P (x)e αx

z = α – is the root of

 

 

 

xr P (x)eαx

 

 

 

 

 

 

 

 

 

 

 

~

 

 

 

 

 

 

 

 

n

 

the auxiliary equation

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

divisible by r

 

 

 

 

 

 

 

 

 

 

4.1

A cos βx + B sin βx

z = β i – is not the root

A1 cos β x + B1 sin β x

 

 

 

 

 

of the auxiliary equation

 

 

 

 

 

 

 

 

 

 

4.2

A cos βx + B sin βx

z = β i – root of the

xr ( A cos β x + B sin β x)

 

 

 

 

 

auxiliary equation

 

 

 

1

 

 

 

 

1

 

 

 

 

 

 

divisible by r

 

 

 

 

 

 

 

 

 

 

5.1

e

α x

cos β xPn ( x)

z = α + β i – is not the

e

α x

~

 

 

 

 

 

 

 

 

root of the auxiliary

 

~

(Pn ( x) cos β x +

 

 

 

 

 

equation

+ Q n ( x) sin

β x)

 

5.2

e

α x

cos β xPn ( x)

z = α + β i – root of the

x

r

e

α x

~

( x) cos β x +

 

 

auxiliary equation

 

 

(Pn

 

 

 

 

 

 

 

~

 

 

 

 

 

 

 

 

 

 

 

 

divisible by r

+ Q n ( x) sin

β x)

 

3.2.2. Lagrange’s Method (variations of any constants):

This method is used for evaluating the linear differential equation both with variable and constant coefficient when the general solution of the homogeneous equation is known.

Let us consider the Lagrange’s method for the example of the equation of the second order

y′′ + a1 (x) y′ + a2 (x) y = f (x).

(3.30)

216

http://vk.com/studentu_tk, http://studentu.tk/

Let y = C1 y1 + C2 y2 – be the general solution of equation y′′ + a1 (x) y′ + a2 (x) y = 0 . The General solution of not zero equation (3.30) is evaluated in the form

 

 

y = C1 (x) y1 + C2 (x) y2 ,

where the functions C1 (x)

 

і C2 (x)

depend on the system

 

 

 

(x) y +C

(x) y

 

= 0,

 

 

C

 

2

2

 

 

 

1

1

 

 

 

 

 

 

(x) y′+C

(x) y

= f (x).

 

 

C

 

Using Cramer’s

 

1

1

2

 

2

 

 

formula can be evaluated

the homogeneous right hand member

(3.31)

(3.32)

=

y1

y2

 

;

 

1 =

 

 

0

y2

;

 

 

2 =

y1

0

 

;

y

y

 

 

 

f (x)

y

 

 

y

f (x)

 

 

 

 

1

2

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

C(x) =

 

1 ; C

2

(x) =

 

2 ;

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C (x) =

C

(x)dx + C

3

; C

2

(x) =

C(x)dx + C

4

.

1

 

 

1

 

 

 

 

 

 

 

 

 

 

2

 

 

 

Substituting meaning C1 (x) і

C 2 (x)

into the formula (3.31) we will obtain

the general solution of the right-hand member not zero equation (3.30).

 

 

 

 

 

 

 

 

Т.3

 

Examples of typical problems

 

 

 

Find the general solution of linear homogeneous equation

 

 

1. y′′−2y′−3y = 0 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution, Form the equation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

its roots k1 =−1 ,

k2 =3 .

 

 

 

k2 2k 3 = 0 ,

 

 

 

 

 

 

 

 

These are the roots of a given linear independent

partial solutions y

= ex ,

 

y

2

= e3x . Then

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

y = C ex +C

 

e3x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

is the general solution of this equation.

 

 

 

 

 

 

 

 

 

 

 

 

 

2. y′′ − 6y′ + 13y = 0 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution, The equation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k2 6k +13 = 0

 

 

 

 

 

 

We have two complex roots k1 = 3 + 2i , k2 = 3 2i . Then

 

 

 

 

 

 

 

 

y = e3x (C cos 2x + C

2

sin 2x)

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

is the general solution of this equation.

3. y′′ + 8y′ + 16y = 0 .

Solution: Simplifying the equation

k2 +8k +16 = 0 217

http://vk.com/studentu_tk, http://studentu.tk/

And its roots are k1 = −4 , k2 = −4 , then characteristics equation has roots

k = −4 , each one is divisible by two. General solution of this equation can be written in this form,

y = e4x (C1 +C2 x) .

4. y (4) 4y(3) + 4y′′ = 0 .

Solution: Making the equation

k4 4k3 +4k2 = 0

the solution is:

k 2 (k 2 4k + 4) = 0; k = k

2

= 0, k

3

= k

4

= 2 .

 

 

 

 

1

 

 

 

 

 

Partial solutions of these equations are:

 

 

 

 

 

 

 

 

y = 1 ,

y

2

= x ,

y = e2x , y

4

= xe2x .

 

1

 

 

3

 

 

 

 

 

 

 

The general solution of the initial form of these equations are:

y=C1 +C2 x +e2x (C3 +C4 x) .

5.y′′′ − 2y′′ − y′ + 2y = 0 .

Solution, Characteristics equation is:

k3 2k2 k +2 = 0 .

Simplify the left side of this equation on multipliers so that

k 3 k 2(k 2 1) = 0;

(k 2 1)(k 2) = 0 ;

(k 1)(k + 1)(k 2) = 0 ;

k1 = 1, k2 = −1, k3 = 2.

The general solution can be written as follows:

y = C e x + C

2

ex + C

3

e2x .

 

 

 

 

1

 

 

 

 

 

 

6. y (4) y = 0 .

 

 

 

 

 

 

 

 

Solution, Make and solve the characteristics equation

 

 

 

 

k 4 1 = 0; (k 2 + 1)(k 1)(k + 1) = 0 ; k

= ±i, k

3

= 1 , k

4

= −1 .

 

 

1,2

 

 

 

 

General solution is

y= C1 sin x + C2 cos x + C3e x + C4ex .

7.Find the main value “Z” of the right side of this equation

a

0

y(n) + a y(n1) + ... + a

n1

y′ + a

n

y = f (x),

if:

 

1

 

 

 

 

b) f (x) = x2 +2x +1 ;

 

c) f (x) = e4x ;

а) f (x) =5 ;

 

 

 

d) f (x) = e2x sin 7x ;

e) f (x) =−cos 2x +3sin 2x ; f) f (x) = x sin x .

 

 

 

218

 

 

 

 

http://vk.com/studentu_tk, http://studentu.tk/

Solution. In all cases the right side has a special form. By formula (3.29), we

have

b) z = 0;

c) z = 4;

 

d) z = 2 + 7і; e) z = 2і;

f) z = і.

а) z = 0;

 

8. Find the general solution of right hand member not zeroequation

 

 

y′′ − 3y′ − 4y = x .

 

 

 

 

Solution. Solve homogeneous equation at first

 

 

 

 

We have:

 

y′′ − 3y′ − 4y = 0 .

 

 

 

 

 

 

 

 

= 4; y = C ex +C

 

e4x .

 

k2 3k 4 = 0; k =−1, k

2

2

 

The main

value of

1

side

1

 

 

not zero

the right

 

of the right hand

member

z = 0 (Without ezx ) which is not the root of characteristics equation, thus, partial solution of the right hand member not zero equation can be written as follows:

y* = Ax + B .

When Ax + B is a linear equation which is the general form of the right side of this equation, А and В are unknown constants which can be calculated.

Find the derivatives y* and y′′* :

y* = A, y′′* = 0 .

Now we would substitute these values for y* , y* and y′′* in the initial equation:

3A 4(Ax + B) = x , 4Ax 3A 4B = x .

After relating the coefficients which have the same power. x , we would obtain the system of two equations:

x1 : 4A = 1 , x0 : 3A 4B = 0 ,

 

 

 

 

 

 

 

 

 

 

 

 

The solutions of these are

A = −

1

,

B =

3

.

so, y* = −

1

x +

3

 

is a

partial solution of this equation.

4

 

16

 

 

 

4

 

16

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

3

 

 

 

 

 

The general solution of this equation is : y = C ex + C e4x

x +

.

 

 

 

 

 

 

 

 

 

 

 

 

1

 

2

4

 

 

16

 

 

 

 

 

9. Find the general solution of the right hand member not zero equation:

 

y′′ − 4y′ = 48x2 2 .

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution. Characteristic equation k2 4k = 0 has two roots

 

k

= 0, k

2

= 4 .

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

Then 1, e4x is a fundamental system

y = C1 + C2 e4x

is the general solution of the homogeneous equation y′′ − 4y′ = 0 .

Now we are supposed to find the partial solution of this equation similar to the previous example. The general value of right hand member not zero equation

219

http://vk.com/studentu_tk, http://studentu.tk/

z = 0 (without multiplier ezx ), but this value is the root of characteristic

equation and can be divided by one, then the partial solution of the right hand member not zero equation we would calculate in such a form

y* = x(Ax2 + Bx + C) = Ax3 + Bx2 + Cx ,

 

where А, В and С are unknown

constants, so Ax2 + Bx + C ,

which is the

simplified form of the right side x2 2 , should be multiplied by

x1 (according

to example 2.2 in table 3.4).

 

 

Find the derivatives y* and

y′′* :

 

y* = 3Ax2 + 2Bx + C, y′′* = 6Ax + 2B .

After putting the values y* and y′′* in the initial equation we will obtain : 6Ax + 2B 4(3Ax2 + 2Bx + C) = 48x2 2 ,

12Ax2 + (6A 8B)x + 2B 4C = 48x2 2 .

Comparing the coefficients which has the same order x , we will obtain a system of three equations:

x1 : 12A = 48 , x1 : 6A 8B = 0 , x0 : 2B 4C = −2 ,

the solutions of which are A = −4, B = −3 , С= –1. so, y* = −4x3 3x2 x is

the partial solution of the given equation.

The general solution of the initial equation:

y= C1 + C2 e4x 4x3 3x2 x .

10.Find the general solution of the right hand member not zero equation y′′ − 4y′ + 5y = e2x .

 

Solution. Characteristic equations k2 4k + 5 = 0 has two complex roots

k

= 2 + i , k

2

= 2 i . Тhen e2x cos x , e2x sin x is a fundamental system;

1

 

 

 

 

 

 

 

y = (C cos x + C

2

sin x)e2x

 

 

 

1

 

is the general solution of the homogeneous equation y′′ − 4y′ + 5y = 0 .

Initial value of the right side of the right member not zero equation z = 2 is not a root of the characteristic equation. Partial solution of the right hand member not zero equation in this form

y* = Ae2x .

 

After putting the value in the initial equation

y* = Ae2x , y* = 2Ae2x and

y′′* = 4Ae2x , we would obtain:

 

4Ae2x 4(2Ae2x ) + 5(Ae2x ) = e2x ,

Ae2x = e2x , А = 1.

220

 

http://vk.com/studentu_tk, http://studentu.tk/

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]