Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Photochemistry_of_Organic

.pdf
Скачиваний:
69
Добавлен:
10.06.2015
Размер:
18.04 Mб
Скачать

References

477

125.Nickel, B., Rodriguez Prieto, M. F., On the Alleged Triplet-Excimer Phosphorescence from Liquid Solutions of Naphthalene and Di-a-naphthylalkanes in Isooctane, Chem. Phys. Lett.

1988, 146, 125–132.

126.Kang, H. K., Kang, D. E., Boo, B. H., Yoo, S. J., Lee, J. K., Lim, E. C., Existence of Intramolecular Triplet Excimer of Bis(9-fluorenyl)methane, J. Phys. Chem. A 2005, 109, 6799–6804.

127.Heinz, B., Schmidt, B., Root, C., Satzger, H., Milota, F., Fierz, B., Kiefhaber, T., Zinth, W., Gilch, P., On the Unusual Fluorescence Properties of Xanthone in Water, Phys. Chem. Chem. Phys. 2006, 8, 3432–3439.

128.Parker, C. A., Hatchard, C. G., Delayed Fluorescence of Pyrene in Ethanol, Trans. Faraday Soc. 1963, 59, 284–295.

129.Adam, W., The Singlet Oxygen Story, Chem. Unserer Zeit 1981, 15, 190–196.

130.Greer, A., Christopher Foote s Discovery of the Role of Singlet Oxygen [1O2 (1Dg)] in Photosensitized Oxidation Reactions, Acc. Chem. Res. 2006, 39, 797–804.

131.Kautsky, H., de Bruijn, H., Neuwirth, R., Baumeister, W., Energy Transfers at Surfaces. VII. Photosensitized Oxidation as the Action of an Active, Metastable State of the Oxygen Molecule, Ber. Bunsen-Ges. Phys. Chem. 1933, 66B, 1588–1600.

132.Khan, A., Kasha, M., Red Chemiluminescence of Oxygen in Aqueous Solution, J. Chem. Phys. 1963, 39, 2105–2106.

133.Foote, C. S., Wexler, S., Singlet Oxygen. A Probable Intermediate in Photosensitized Autoxidations, J. Am. Chem. Soc. 1964, 86, 3880–3881.

134.Herzberg, G., Molecular Spectra and Molecular Structure, Vols I–III Van Nostrand, Toronto, 1966.

135.Kearns, D. R., Physical and Chemical Properties of Singlet Molecular Oxygen, Chem. Rev. 1971, 71, 395–427.

136.Wasserman, H. H., Murray, R. W., Singlet Oxygen, Academic Press, New York, 1979.

137.Murov, S. L., Carmichael, I., Hug, G. L., Handbook of Photochemistry, 2nd edn, Marcel Dekker, New York, 1993.

138.Ayman, A., Abdel-Shafi, A. A., Ward, M. D., Schmidt, R., Mechanism of Quenching by

Oxygen of the Excited States of Ruthenium(II) Complexes in Aqueous Media. Solvent Isotope Effect and Photosensitized Generation of Singlet Oxygen, O2(1Dg), by [Ru(diimine)(CN)4]2 Complex Ions, Dalton Trans. 2007, 2517–2527.

139.Abdel-Shafi, A. A., Wilkinson, F., Charge Transfer Effects on the Efficiency of Singlet Oxygen Production Following Oxygen Quenching of Excited Singlet and Triplet States of Aromatic Hydrocarbons in Acetonitrile, J. Phys. Chem. A 2000, 104, 5747–5757.

140.Hatz, S., Lambert, J. D. C., Ogilby, P. R., Measuring the Lifetime of Singlet Oxygen in a Single Cell: Addressing the Issue of Cell Viability, Photochem. Photobiol. Sci. 2007, 6, 1106–1116.

141.Weldon, D., Ogilby, P. R., Time-resolved Absorption Spectrum of Singlet Oxygen in Solution, J. Am. Chem. Soc. 1998, 120, 12978–12979.

142.Schmidt, R., Quantitative Determination of 1Sgþ and 1Dg Singlet Oxygen in Solvents of Very Different Polarity. General Energy Gap Law for Rate Constants of Electronic Energy Transfer to and from O2 in the Absence of Charge Transfer Interactions, J. Phys. Chem. A 2006, 110, 2622–2628.

143.Ogilby, P. R., Foote, C. S., The Effect of Solvent, Solvent Isotopic Substitution, and Temperature on the Lifetime of Singlet Molecular Oxygen, J. Am. Chem. Soc. 1983, 105, 3423–3430.

144.Rodgers, M. A. J., Snowden, P. T., Lifetime of O2ð1DgÞ in Liquid Water as Determined by Time-resolved Infrared Luminescence Measurements, J. Am. Chem. Soc. 1982, 104,

5541–5543.

145.Schmidt, R., Afshari, E., Collisional Deactivation of O2ð1DgÞ by Solvent Molecules, Ber. Bunsen-Ges. Phys. Chem. 1992, 96, 788–794.

478

References

146.Solomon, M., Sivaguru, J., Jockusch, S., Adam, W., Turro, N. J., Vibrational Deactivation of Singlet Oxygen: Does it Play a Role in Stereoselectivity During Photooxygenation?,

Photochem. Photobiol. Sci. 2008, 7, 531–533.

147.Gouterman, M., Oxygen Quenching of Luminescence of Pressure Sensitive Paint for Wind Tunnel Research, J. Chem. Educ. 1997, 74, 697–702.

148.Khalil, G. E., Chang, A., Gouterman, M., Callis, J. B., Dalton, L. R., Turro, N. J., Jockusch, S., Oxygen Pressure Measurement Using Singlet Oxygen Emission, Rev. Sci. Instrum. 2005, 76, art. no. 054101.

149.Born, R., Fischer, W., Heger, D., Tokarczyk, B., Wirz, J., Photochromism of Phenoxynaphthacenequinones: Diabatic or Adiabatic Phenyl Group Transfer?, Photochem. Photobiol. Sci. 2007, 6, 552–559.

150.Longuet-Higgins, H. C., Intersection of Potential Energy Surfaces in Polyatomic Molecules,

Proc. R. Soc. London, Ser. A 1975, 344, 147–156.

151.Teller, E., Crossing of Potential Surfaces, J. Phys. Chem. 1937, 41, 109–116.

¨

152. Wigner, E., Witmer, E. E., Uber die Struktur der Zweiatomigen Molekelspektren nach der Quantenmechanik, Z. Phys. 1928, 51, 859–886.

153. Jasper, A. W., Nangia, S., Zhu, C., Truhlar, D. G., Non-Born–Oppenheimer Molecular Dynamics, Acc. Chem. Res. 2006, 39, 101–108.

154. Wittig, C., The Landau–Zener Formula, J. Phys. Chem. B 2005, 109, 8428–8430.

155. Braun, A. M., Maurette, A.-T., Oliveros, E., Photochemical Technology, John Wiley & Sons, Ltd, Chichester, 1991, pp. 202–396.

156. Calvert, J. G., Pitts, J. N., Experimental Methods in Photochemistry. In: Photochemistry, John Wiley & Sons, Inc, New York, 1966, Chapter 7, pp. 686–798.

157. Montalti, M., Credi, A., Prodi, L., Gandolfi, M. T., Handbook of Photochemistry, 3rd edn, CRC Press, Boca Raton, FL, 2006.

158. Rabek, J. F., Experimental Methods in Photochemistry and Photophysics, John Wiley and Sons, Inc., New York, 1982.

159. Scaiano, J. C., CRC Handbook of Organic Photochemistry (2 Volumes), CRC Press, Boca Raton, FL, 1987.

160. Maiman, T. H., Stimulated Optical Radiation in Ruby, Nature 1960, 187, 493–494. 161. Milloni, P. W., Eberly, J. H., Lasers, John Wiley & Sons, Inc, New York, 1988.

162. Klimov, V.I., Ivanov, S. A., Nanda, J., Achermann, M., Bezel, I., McGuire, J. A., Piryatinski, A., Single-exciton Optical Gain in Semiconductor Nanocrystals, Nature 2007, 447, 441–446.

163. Nanda, J., Ivanov, S. A., Achermann, M., Bezel, I., Piryatinski, A., Klimov, V. I., Light Amplification in the Single-exciton Regime Using Exciton–Exciton Repulsion in Type-II Nanocrystal Quantum Dots, J. Phys. Chem. 2007, 111, 15382–15390.

164. Hansch, T. W., Passion for Precision, Ann. Phys. (Leipzig) 2006, 15, 627–652.

165. Yersin, H., Highly Efficient OLEDs with Phosphorescent Materials, Solid State Chemistry, Wiley-VCH, Verlag GmbH, Weinheim, 2007.

166. Jahnisch, K., Hessel, V., Lowe, H., Baerns, M., Chemistry in Microstructured Reactors, Angew. Chem. Int. Ed. 2004, 43, 406–446.

167. Klan, P., Cirkva, V., Microwaves in Photochemistry. In Loupy, A. (ed), Microwaves in Organic Synthesis, 2nd edn, Wiley-VCH Verlag GmbH, Weinheim, 2006, pp. 860–896.

168. Klan, P. Hajek, M., Cirkva, V., The Electrodeless Discharge Lamp: a Prospective Tool for Photochemistry. Part 3. The Microwave Photochemistry Reactor, J. Photochem. Photobiol. A 2001, 140, 185–189.

169. Klan, P. Literak, J., Hajek, M., The Electrodeless Discharge Lamp: a Prospective Tool for Photochemistry, J. Photochem. Photobiol. A 1999, 128, 145–149.

170. Fox, M. A., Dulay, M. T., Heterogeneous Photocatalysis, Chem. Rev. 1993, 93, 341–357.

References

479

171.Tung, C. H., Song, K., Wu, L.-Z., Li, H.-R., Zhang, L.-P., Microreactor-controlled Product Selectivity in Organic Photochemical Reactions. In Ramamurthy, V., Schanze, K. (eds),

Understanding and Manipulating Excited-state Processes, Marcel Dekker, New York, 2001, pp. 317–383.

172.Ramamurthy, V., Organic Photochemistry in Organized Media, Tetrahedron 1986, 42, 5753–5839.

173.Weiss, R. G., Ramamurthy, V., Hammond, G. S., Photochemistry in Organized and Confining Media – A Model, Acc. Chem. Res. 1993, 26, 530–536.

174.Decker, C., Photoinitiated Crosslinking Polymerisation, Prog. Polym. Sci. 1996, 21, 593–650.

175.Valeur, B., Molecular Fluorescence, Principles and Applications, Wiley-VCH Verlag GmbH, Weinheim, 2002.

176.Eaton, D. F., Reference Materials for Fluorescence Measurements, Pure Appl. Chem. 1988, 60, 1107–1114.

177.Brower, F., San Roman, E., Reference Methods, Standards and Applications of Photoluminescence, IUPAC. 2008, in preparation.

178.Evans, D. F., Magnetic Perturbation of Singlet–Triplet Transitions. Part IV. Unsaturated Compounds, J. Chem. Soc. 1960, 1735–1745.

179.Demas, J. N., Crosby, G. A., The Measurement of Photoluminescence Quantum Yields. A Review, J. Phys. Chem. 1971, 75, 991–1024.

180.Eaton, D. F., Recommended Methods for Fluorescence Decay Analysis, Pure Appl. Chem. 1990, 62, 1631–1648.

181.Ernsting, N. P., Fluorescence Upconversion, Pure Appl. Chem. in preparation.

182.Michl, J., Thulstrup, E. W., Spectroscopy with Polarized Light, VCH, New York, 1986.

183.Thulstrup, E. W., Michl, J., Eggers, J. H., Polarization Spectra in Stretched Polymer Sheets. Physical Significance of the Orientation Factors and Determination of p,p Transition Moment Directions in Molecules of Low Symmetry, J. Phys. Chem. 1970, 74, 3878–3884.

184.Wilkinson, F., Editorial: Special Issue in Commemoration of Lord George Porter FRSC FRS OM, Photochem. Photobiol. Sci. 2003, 2, ix–x.

185.Carmichael, I., Hug, G. L., Spectroscopy, Intramolecular Photophysics of Triplet States. In Scaiano, J. C. (ed), CRC Handbook of Organic Photochemistry, Vol. I, CRC Press, Boca Raton, FL, 1987, pp. 369–403.

186.Lobastov, V. A., Weissenrieder, J., Tang, J., Zewail, A. H., Ultrafast Electron Microscopy (UEM): Four-dimensional Imaging and Diffraction of Nanostructures During Phase Transitions, Nano Lett. 2007, 7, 2552–2558.

187.Diau, E. W. G., Kotting, C., Solling, T. I., Zewail, A. H., Femtochemistry of Norrish Type-I Reactions: III. Highly Excited Ketones – Theoretical, ChemPhysChem 2002, 3, 57–78.

188.Scaiano, J. C., Nanosecond Laser Flash Photolysis: a Tool for Physical Organic Chemistry. In Moss, R. A., Platz, M. S., Jones, M., Jr. (eds), Reactive Intermediate Chemistry, John Wiley, & Sons, Inc., Hoboken, NJ, 2004, pp. 847–871.

189.Wilkinson, F., Kelly, G., Diffuse Reflectance Flash Photolysis. In Scaiano, J. C. (ed), Handbook of Organic Photochemistry, Vol. I, CRC Press, Boca Raton, FL, 1989, pp. 293–314.

190.Carmichael, I., Hug, G. L., A Unified Analysis of Noncomparative Methods for Measuring the Molar Absorptivity of Triplet–Triplet Transitions, Appl. Spectrosc. 1987, 41, 1033.

191.Bonneau, R., Wirz, J., Zuberbuhler, A. D., Methods for the Analysis of Transient Absorbance Data (Technical Report), Pure Appl. Chem. 1997, 69, 979–992.

192.Baum, P., Zewail, A. H., Breaking Resolution Limits in Ultrafast Electron Diffraction and Microscopy, Proc. Natl. Acad. Sci. USA 2006, 103, 16105–16110.

193.Yang, D.-S., Gedik, N., Zewail, A. H., Ultrafast Electron Crystallography. 1. Nonequilibrium Dynamics of Nanometer-scale Structures, J. Phys. Chem. C 2007, 111, 4889–4919.

480

References

194.Kovalenko, S. A., Dobryakov, A. L., Ruthmann, J., Ernsting, N. P., Femtosecond Spectroscopy of Condensed Phases with Chirped Supercontinuum Probing, Phys. Rev. A 1999, 59, 2369–2384.

195.Hilinski, E. F., The Picosecond Realm. In Moss, R. A., Platz, M. S., Jones, M. Jr, (eds), Reactive Intermediate Chemistry, John Wiley & Sons, Inc, Hoboken, NJ, 2004, pp. 873–897.

196.Bazin, M., Ebbesen, T. W., Distortions in Laser Flash Photolysis Absorption Measurements. The Overlap Problem., Photochem. Photobiol. 1983, 37, 675–678.

197.Fron, E., Pilot, R., Schweitzer, G., Qu, J., Herrmann, A., Muellen, K., Hofkens, J., Van der Auweraer, M., De Schryver, F. C., Photoinduced Electron Transfer in Perylenediimide Triphenylamine-based Dendrimers: Single Photon Timing and Femtosecond Transient Absorption Spectroscopy Photochem. Photobiol. Sci. 2008, 7, 597–604.

198.Mauser, H., Gauglitz, G., Photokinetics, Chemical Kinetics, Vol. 36, Elsevier, Amsterdam, 1998.

199.Andraos, J., Lathioor, E. C., Leigh, W. J., Simultaneous pH–Rate Profiles Applied to the Two-step Consecutive Sequence A ! B ! C: a Theoretical Analysis and Experimental Verification,

J.Chem. Soc., Perkin Trans. 2 2000, 365–373.

200.Grellmann, K. H., Scholz, H.-G., Determination of Decay Constants with a Sampling Flash Apparatus. The Triplet State Lifetimes of Anthracene and Pyrene in Fluid Solutions Chem. Phys. Lett. 1979, 62, 64–71.

201.Malinowski, E. R., Factor Analysis in Chemistry, 3rd edn, John Wiley & Sons, Inc, New York, 2002.

202.Maeder, M., Neuhold, Y.-M., Practical Data Analysis in Chemistry, Data Handling in Science and Technology, Vol. 26, Elsevier, New York, 2007.

203.Maeder, M., Evolving Factor Analysis for the Resolution of Overlapping Chromatographic Peaks, Anal. Chem. 1987, 59, 527–530.

204.von Frese, J., Kovalenko, S. A., Ernsting, N. P., Interactive Curve Resolution by Using Latent Projections in Polar Coordinates, J. Chemom. 2007, 21, 2–9.

205.Maeder, M., Neuhold, Y.-M., Kinetic Modeling of Multivariate Measurements with Nonlinear Regression. In Gemperline, P. (ed), Practical Guide to Chemometrics, 2nd edn, CRC Press, Boca Raton, FL, 2006, pp. 217–261.

206.Maeder, M., Zuberbuhler, A. D., Nonlinear Least-squares Fitting of Multivariate Absorption Data, Anal. Chem. 1990, 62, 2220–2224.

207.Ma, C., Kwok, W. M., Chan, W. S., Du, Y., Kan, J. T. W., Phillips, D. L., Ultrafast Timeresolved Transient Absorption and Resonance Raman Spectroscopy Study of the Photodeprotection and Rearrangement Reactions of p-Hydroxyphenacyl Caged Phosphates,

J.Am. Chem. Soc. 2006, 128, 2558–2570.

208.Kukura, P., Yoon, S., Mathies, R. A., Femtosecond Stimulated Raman Spectroscopy, Anal. Chem. 2006, 78, 5952–5959.

209.Shim, S., Mathies, R. A., Development of a Tunable Femtosecond Stimulated Raman Apparatus and Its Application to b-Carotene, J. Phys. Chem. B 2008, 112, 4826–4832.

210.Kukura, P., McCamant, D. W., Yoon, S., Wandschneider, D. B., Mathies, R. A., Structural Observation of the Primary Isomerization in Vision With Femtosecond-Stimulated Raman, Science 2005, 310, 1006–1009.

211.Rodig, C., Siebert, F., Error and Artifacts in Time-resolved Step-scan FT-IR Spectroscopy,

Appl. Spectrosc. 1999, 53, 893–901.

212.Wang, Y., Yuzawa, T., Hamaguchi, H., Toscano, J. P., Time-resolved IR Sudies of 2-Naphthyl (carbomethoxy)carbene: Reactivity and Direct Experimental Estimate of the Singlet/Triplet Energy Gap, J. Am. Chem. Soc. 1999, 212, 2875–2882.

213.Barth, A., Time-resolved IR Spectroscopy with Caged Compounds: an Introduction. In Goeldner, M., Givens, R. S. (eds), Dynamic Studies in Biology, Wiley-VCH Verlag GmbH, Weinheim, 2005, pp. 369–399.

References

481

214.Kuhn, H. J., Braslavsky, S. E., Schmidt, R., Chemical Actinometry, Pure Appl. Chem. 2004, 76, 2105–2146.

215.Hatchard, C. G., Parker, C. A., A New Sensitive Chemical Actinometer. II. Potassium Ferrioxalate as a Standard Chemical Actinometer, Proc. R. Soc. London, Ser. A 1956, 235, 518–536.

216.Goldstein, S., Rabani, J., The Ferrioxalate and Iodide–Iodate Actinometers in the UV Region,

J.Photochem. Photobiol. A 2008, 193, 50–55.

217.Uhlmann, E., Gauglitz, G., New Aspects in the Photokinetics of Aberchrome 540, J. Photochem. Photobiol. A 1996, 98, 45–49.

218.Schmidt, R., Brauer, H. D., Self-sensitized Photooxidation of Aromatic Compounds and Photocycloreversion of Endoperoxides – Applications in Chemical Actinometry, J. Photochem. 1984, 25, 489–499.

219.Bowman, W. D., Demas, J. N., Ferrioxalate Actinometry. A Warning on Its Correct Use,

J.Phys. Chem. 1976, 80, 2434–2435.

220.Mauser, H., Zur Spektroskopischen Untersuchung der Kinetik Chemischer Reaktionen, II. Extinktionsdifferenzendiagramme, Z. Naturforsch., Teil B 1968, 23. 1025,

221.Mauser, H., Formale Kinetik, Experimentelle Methoden der Physik und Chemie, Vol. I, Bertelsmann Universitatsverlag, Dusseldorf, 1974.

222.Gauglitz, G., Hubig, S., Photokinetische Grundlagen Moderner Chemischer Aktinometer, Z. Phys. Chem., N. F. 1984, 139, 237–246.

223.Gauglitz, G., Hubig, S., Chemical Actinometry in the UV by Azobenzene Actinometry in Concentrated Solution, J. Photochem. 1985, 30, 121–125.

224.Serpone, N., Salinaro, A., Terminology, Relative Photonic Efficiencies and Quantum Yields in Heterogeneous Photocatalysis. Part I, Pure Appl. Chem. 1999, 71, 303–320.

225.Salinaro, A., Emeline, A. V., Zhao, J., Hidaka, H., Ryabchuk, V. A., Serpone, N., Terminology, Relative Photonic Efficiencies and Quantum Yields in Heterogeneous Photocatalysis. Part II: Experimental Determination of Quantum Yields, Pure Appl. Chem. 1999, 71, 321–335.

226.Dulin, D., Mill, T., Development and Evaluation of Sunlight Actinometers, Environ. Sci. Technol. 1982, 16, 815–820.

227.Oakes, J., Photofading of Textile Dyes, Rev. Prog. Color. Relat. Top. 2001, 31, 21–28.

228.Pugh, S. L., Guthrie, J. T., The Development of Light Fastness Testing and Light Fastness Standards, Rev. Prog. Color. Relat. Top. 2001, 31, 42–56.

229.Linschitz, H., Pekkarinen, L., Studies on Metastable States of Porphyrins. 2., J. Am. Chem. Soc. 1960, 82, 2407–2411.

230.Wagner, P. J., Steady-state Kinetics. In Scaiano, J. C. (ed), Handbook of Organic Photochemistry, Vol. II, CRC Press, Boca Raton, FL, 1989, pp. 251–269.

231.Keizer, J., Diffusion Effects on Rapid Bimolecular Chemical Reactions, Chem. Rev. 1987, 87, 167–180.

232.Mac, M., Wirz, J., Deriving Intrinsic Electron-transfer Rates from Nonlinear Stern–Volmer Dependencies for Fluorescence Quenching of Aromatic Molecules by Inorganic Anions in Acetonitrile, Chem. Phys. Lett. 1993, 211, 20–26.

233.Allonas, X., Ley, C., Bibaut, C., Jacques, P., Fouassier, J. P., Investigation of the Triplet Quantum Yield of Thioxanthone by Time-resolved Thermal Lens Spectroscopy: Solvent and Population Lens Effects, Chem. Phys. Lett. 2000, 322, 483–490.

234.Bonneau, R., Carmichael, I., Hug, G. L., Molar Absorption Coefficients of Transient Species in Solution, Pure Appl. Chem. 1991, 63, 289–299.

235.Bensasson, R., Goldschmidt, C. R., Land, E. J., Truscott, T. G., Triplet Excited State of Furocoumarins: Reaction with Nucleic Acid Bases and Amino Acids, Photochem. Photobiol. 1978, 28, 277–281.

482

References

236.Adam, W., Fragale, G., Klapstein, D., Nau, W. M., Wirz, J., Phosphorescenc and Transient Absorption of Azoalkane Triplet States, J. Am. Chem. Soc. 1995, 117, 12578–12592.

237.Murasecco-Suardi, P., Gassmann, E., Braun, A. M., Oliveros, E., Determination of the Quantum Yield of Intersystem Crossing of Rose Bengal, Helv. Chim. Acta 1987, 70, 1760–1773.

238.Horrocks, A. R., Medinger, T., Wilkinson, F., New Accurate Method for Determining the Quantum Yields of Triplet State Production of Aromatic Molecules in Solution, Chem. Commun. 1965, 452.

239.Bachilo, S. M., Weisman, R. B., Determination of Triplet Quantum Yields from Triplet–Triplet Annihilation Fluorescence, J. Phys. Chem. A 2000, 104, 7711–7714.

240.Bally, T., Matrix Isolation. In Moss, R. A., Platz, M. S., Jones, M. (eds), Reactive Intermediate Chemistry, John Wiley & Sons, Inc., Hoboken, NJ, 2004, pp. 797–845.

241.Maier, G., Reisenauer, H. P., Preiss, T., Pacl, H., Juergen, D., Tross, R., Senger, S., Highly Reactive Molecules: Examples for the Interplay Between Theory and Experiment, Pure Appl. Chem. 1997, 69, 113–118.

242.Bondybey, V. E., Smith, A. M., Agreiter, J., New Developments in Matrix Isolation Spectroscopy, Chem. Rev. 1996, 96, 2113–2134.

243.Dunkin, I. R., Matrix Photochemistry. In Horspool, W. M., Lenci, F. (eds), CRC Handbook of Organic Photochemistry and Photobiology, 2nd edn, CRC Press, Boca Raton, FL, 2004, Chapter 14, pp. 1–27.

244.Jacox, M. E., Vibrational and Electronic Spectra of Neutral and Ionic Combustion Reaction Intermediates Trapped in Rare-gas Matrixes, Acc. Chem. Res. 2004, 37, 727–734.

245.Whittle, E., Dows, D. A., Pimentel, G. C., Matrix Isolation Method for the Experimental Study of Unstable Species, J. Chem. Phys. 1954, 22, 1943–1943.

246.Jonkman, H. T., Michl, J., Secondary Ion Mass Spectrometry: a Tool for Identification of Matrix-isolated Species, J. Chem. Soc., Chem. Commun. 1978, 751–752.

247.Maier, J. P., Electronic Spectroscopy of Carbon Chains, Chem. Soc. Rev. 1997, 26, 21–28.

248.Harshbarger, W. R., Robin, M. B., The Opto-acoustic Effect: Revival of an Old Technique for Molecular Spectroscopy, Acc. Chem. Res. 1973, 6, 329–334.

249.Braslavsky, S., Heibel, G. E., Time-resolved Photothermal and Photoacoustic Methods Applied to Photoinduced Processes in Solution, Chem. Rev. 1992, 92, 1381–1410.

250.Gensch, T., Viappiani, C., Time-resolved Photothermal Methods: Accessing Time-resolved Thermodynamics of Photoinduced Processes in Chemistry and Biology, Photochem. Photobiol. Sci. 2003, 2, 699–721.

251.Ni, T., Caldwell, R. A., Melton, L. A., The Relaxed and Spectroscopic Energies of Olefin Triplets, J. Am. Chem. Soc. 1989, 111, 457–464.

252.Arnaut, L. G., Caldwell, R. A., Elbert, J. E., Melton, L. A., Recent Advances in Photoacoustic Calorimetry: theoretical Basis and Improvements in Experimental Design, Rev. Sci. Instrum. 1992, 63, 5381–5389.

253.Andres, G. O., Cabrerizo, F. M., Martinez-Junza, V., Braslavsky, S. E., A Large Entropic Term Due to Water Rearrangement is Concomitant with the Photoproduction of Anionic Free-base Porphyrin Triplet States in Aqueous Solutions, Photochem. Photobiol. 2007, 83, 503–510.

254.Andres, G. O., Martinez-Junza, V., Crovetto, L., Braslavsky, S. E., Photoinduced Electron Transfer from Tetrasulfonated Porphyrin to Benzoquinone Revisited. The Structural Volumenormalized Entropy Change Correlates with Marcus Reorganization Energy, J. Phys. Chem. A 2006, 110, 10185–10190.

255.Hou, H. J. M., Mauzerall, D., The A( )F(x) to F–A/B Step in Synechocystis 6803 Photosystem I is Entropy Driven, J. Am. Chem. Soc. 2006, 128, 1580–1586.

256.Herbrich, R. P., Schmidt, R., Investigation of the Pyrene/N,N0-Diethylaniline Exciplex by Photoacoustic Calorimetry and Fluorescence Spectroscopy, J. Photochem. Photobiol. A 2000, 133, 149–158.

References

483

257.Helmchen, F., Denk, W., Deep Tissue Two-photon Microscopy, Nature Methods 2005, 2, 932–940.

258.Barbara, P. F., Single-molecule Spectroscopy, Acc. Chem. Res. 2005, 38, 503.

259.Silbey, R. J., Single-molecule Chemistry and Biology. Special Feature, Proc. Natl. Acad. Sci. 2007, 104, 12596–12602.

260.Cornish, P. V., Ha, T., A Survey of Single-molecule Techniques in Chemical Biology, ACS Chem. Biol. 2007, 2, 53–61.

261.Ambrose, W. P., Goodwin, P. M., Jett, J. H., Van Orden, A., Werner, J. H., Keller, J. H., Single Molecule Fluorescence Spectroscopy at Ambient Temperature, Chem. Rev. 1999, 99, 2929–2956.

262.Widengren, J., Kudryavtsev, V., Antonik, M., Berger, S., Gerken, M., Seidel, C. A. M., Singlemolecule Detection, Identification of Multiple Species by Multiparameter Fluorescence Detection, Anal. Chem. 2006, 78, 2039–2050.

263.Al-Soufi, W., Reija, B., Novo, M., Felekyan, S., Kuehnemuth, R., Seidel, C. A. M., Fluorescence Correlation Spectroscopy, a Tool to Investigate Supramolecular Dynamics: Inclusion Complexes of Pyronines with Cyclodextrin, J. Am. Chem. Soc. 2005, 127, 8775–8784.

264.Lampe, M., Briggs, J. A. G., Endress, T., Glass, B., Riegelsberger, S., Kraeusslich, H.-G., Lamb, D. C., Braeuchle, C., Mueller, B., Double-labelled HIV-1 Particles for Study of Virus–Cell Interaction, Virology 2007, 360, 92–104.

265.Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacio, J. S., Davidson, M. W., Lippincott-Schwartz, J., Hess, H. F., Imaging Intracellular Fluorescent Proteins at Nanometer Resolution, Science 2006, 313, 1642–1645.

266.Koopmans, W. J. A., Brehm, A., Logie, C., Schmidt, T., van Noort, J., Single-pair FRET Microscopy Reveals Mononucleosome Dynamics, J. Fluoresc., 2007, 17, 785–795.

267.Zimmer, M., Green Fluorescent Protein (GFP): Applications, Structure, and Related Photophysical Behavior, Chem. Rev. 2002, 102, 759–781.

268.Tsien, R. Y., The Green Fluorescent Protein, Annu. Rev. Biochem. 1998, 67, 509–544.

269.Orte, A., Craggs, T. D., White, S. S., Jackson, S. E., Klenerman, D., Evidence of an Intermediate and Parallel Pathways in Protein Unfolding from Single-molecule Fluorescence, J. Am. Chem. Soc. 2008, 130, 7898–7907.

270.Inoue, H., Ezaki, A., Hide, M., Mechanism of the Photocycloaddition of 1- Aminoanthraquinones to Olefins by Visible Light Irradiation, J. Chem. Soc., Perkin Trans. 2 1982, 833–839.

271.Heilbronner, E., Bock, H., H€uckel Molecular Orbital Model and Its Application, John Wiley & Sons, Inc., New York, 1976.

272.Borden, W. T., Modern Molecular Orbital Theory for Chemists, Prentice-Hall, London, 1975.

273.Bishop, D. M., Group Theory and Chemistry, Dover, Mineola, NY, 1993.

274.Cotton, A. F., Chemical Applications of Group Theory, 3rd edn, Wiley-Interscience, New York, 1990.

275.Walton, P. H., Beginning Group Theory for Chemistry, Oxford University Press, Oxford, 1998.

276.Sondheimer, F., Ben-Efraim, D. A., Wolosovsky, R., Unsaturated Macrocyclic Compounds. XVII. The Prototropic Rearrangement of Linear 1,5-Enynes to Conjugated Polyenes. The Synthesis of a Series of Vinylogs of Butadiene, J. Am. Chem. Soc. 1961, 83, 1675–1681.

277.Pino, T., Ding, H., Guthe, F., Maier, J. P., Electronic Spectra of the Chains HC2nH (n ¼ 8–13) in the Gas Phase, J. Chem. Phys. 2001, 114, 2208–2212.

278.Malhotra, S. S., Whiting, M. C., Researches on Polyenes. Part VIL. The Preparation and Electronic Absorption Spectra of Homologous Series of Simple Cyanines, Merocyanines, and Oxonols, J. Chem. Soc. 1960, 3812–3821.

484

References

279.Clar, E., Aromatische Kohlenwasserstoffe, Polycyclische Systeme. 2nd edn, Organische Chemie in Einzeldarstellungen, Vol. 2, Springer, Berlin, 1952, p. 481

280.Perkampus, H.-H., UV–VIS Atlas of Organic Compounds, 2nd edn, Wiley-VCH Verlag GmbH, Weinheim, 1992.

281.Angliker, H., Rommel, E., Wirz, J., Electronic Spectra of Hexacene in Solution (Ground State, Triplet State, Dication and Dianion), Chem. Phys. Lett. 1982, 87, 208–212.

282.Heilbronner, E., Murrell, J. N., The Prediction of the Spectra of Aromatic Hydrocarbons, J. Chem. Soc. 1962, 2611–2615.

283.Clar, E., Robertson, J. M., Schlogl, R., Schmidt, W., Photoelectron Spectra of Polynuclear Aromatics. 6. Applications to Structural Elucidation: Circumanthracene , J. Am. Chem. Soc. 1981, 103, 1320–1328.

284.Dewar, M. J. S., Dougherty, R. C., The PMO Theory of Organic Chemistry, Plenum Press, New York, 1975.

285.Dewar, M. J. S., The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill, New York, 1969.

286.Coulson, C. A., Rushbrooke, G. S., Note on the Method of Molecular Orbitals, Proc. Camb. Philos. Soc. 1940, 36, 193–200.

287.Longuet-Higgins, H. C., Studies in MO Theory. II: Ionisation Constants of Heteroatomic Amines, J. Chem. Phys. 1950, 18, 275–282.

288.Dewar, M. J. S., A Molecular-orbital Theory of Organic Chemistry. I. General Principles, J. Am. Chem. Soc. 1952, 74, 3341–3345.

289.Dougherty, R. C., Perturbation Molecular Orbital Treatment of Photochemical Reactivity. Nonconservation of Orbital Symmetry in Photochemical Pericyclic Reactions, J. Am. Chem. Soc. 1971, 93, 7187–7201.

290.Heilbronner, E., Murrell, J., The Effect of Alkyl Groups on the Electronic Spectra of Benzenoid Hydrocarbons, Theor. Chim. Acta 1963, 1, 235–244.

291.Heilbronner, E., Hoshi, T., Von Rosenberg, J., Hafner, K., Alkyl-induced, Natural

Hyposochromic Shifts of the 2A

2X and 2B

2X Transitions of Azulene and

Naphthalene Radical Cations, Nouv. J. Chim. 1977, 1, 105–112.

292.Michl, J., Thulstrup, E. W., Why is Azulene Blue and Anthracene White? A Simple MO Picture, Tetrahedron 1976, 32, 205–209.

293.Nickel, B., Klemp, D., The Lowest Triplet State of Azulene-h8, and Azulene-d8 in Liquid Solution. II. Phosphorescence and E-Type Delayed Fluorescence, Chem. Phys. 1993, 174, 319–330.

294.Pariser, R., Parr, R. G., A Semi-empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. I, J. Chem. Phys. 1953, 21, 466–471.

295.Pople, J. A., Electron Interaction in Unsaturated Hydrocarbons, Trans. Faraday Soc. 1953, 49, 1375–1385.

296.Suzuki, H., Electronic Absorption Spectra and Geometry of Organic Molecules, Academic Press, New York, 1967.

297.Klevens, H. B., Platt, J. R., Spectral Resemblances of Cata-condensed Hydrocarbons, J. Chem. Phys. 1949, 17, 470–481.

298.Platt, J. R., Classification of Spectra of Cata-condensed Hydrocarbons, J. Chem. Phys. 1959, 17, 484–495.

299.Whipple, M. R., Vasak, M., Michl, J., Magnetic Circular Dichroism of Cyclic p-Electron Systems. 8. Derivatives of Naphthalene, J. Am. Chem. Soc. 1978, 100, 6844–6852.

300.Blattmann, H.-R., Boll, W. A., Heilbronner, E., Hohlneicher, G., Vogel, E., Weber, J.-P., Die Elektronenzustande von Perimeter-p-Systemen: I. Die Elektronenspektren 1,6-uberbuckter [10]Annulene, Helv. Chim. Acta 1966, 49, 2017–2038.

301.Baumann, H., Oth, J. F. M., The Low-temperature UV/VIS Absorption Spectrum of [14] Annulene, Helv. Chim. Acta 1995, 78, 679–692.

References

485

302.Blattmann, H.-R., Heilbronner, E., Wagniere, G., Electronic States of Perimeter p Systems. IV. The Electronic Spectrum of [18]Annulene, J. Am. Chem. Soc. 1968, 90, 4786–4789.

303.Boguslavskiy, A. E., Ding, H., Maier, J. P., Gas-phase Electronic Spectra of C18 and C22 Rings, J. Chem. Phys. 2005, 123, 0343051–0343057.

304.Boguslavskiy, A. E., Maier, J. P., Gas-phase Electronic Spectrum of the C14 Ring, Phys. Chem. Chem. Phys. 2007, 9, 127–130.

305.Sassara, A., Zerza, G., Chergui, M., Negri, F., Orlandi, G., The Visible Emission and Absorption Spectrum of C60, J. Chem. Phys. 1997, 107, 8731–8741.

306.Leach, S., Vervloet, M., Depres, A., Breheret, E., Hare, J. P., Dennis, T. J., Kroto, H. W., Taylor, R., Walton, D. R. M., Electronic Spectra and Transitions of the Fullerene C60, Chem. Phys. 1992, 160, 451–466.

307.Wirz, J., Electronic Structure and Photophysical Properties of Planar Conjugated Hydrocarbons with a 4n-Membered Ring, Jerusalem Symp. Quantum Chem. Biochem. 1977, 10, 283–294.

308.Howeler, U., Downing, J. W., Fleischhauer, J., Michl, J., MCD of Non-aromatic Cyclic p-Electron Systems. Part 1. The Perimeter Model for Antiaromatic 4N-electron [n]annulene biradicals [erratum to document], J. Chem. Soc., Perkin Trans. 2 1998, 2323.

309.Fleischhauer, J., Michl, J., MCD of Nonaromatic Cyclic p-Electron Systems. 4. Explicit Relations between Molecular Structure and Spectra J. Phys. Chem. A 2000, 104, 7776–7784.

310.Shida, T., Electronic Absorption Spectra of Radical Ions, Elsevier, Amsterdam, 1988.

311.Hudson, B. S., Kohler, B. E., A Low-lying Weak Transition in the Polyene a,w- Diphenyloctatetraene, Chem. Phys. Lett. 1972, 14, 299–304.

312.Schulten, K., Karplus, M., On the Origin of a Low-lying Forbidden Transition in Polyenes and Related Molecules, Chem. Phys. Lett. 1972, 14, 305–309.

313.Zechmeister, L., LeRosen, A. L., Schroeder, W. A., Polgar, A., Pauling, L., Spectral

Characteristic, Configuration of Some Stereoisomeric Carotenoids Including Prolycopene and Pro-g-carotene, J. Am. Chem. Soc. 1943, 65, 1940–1951.

314.Zechmeister, L., Polgar, A., Cis–trans Isomerization and cis-Peak Effect in the a-Carotene Set and in Some Other Stereoisomeric Sets, J. Am. Chem. Soc. 1944, 66, 137–144.

315.Lunde, K., Zechmeister, L., Cis–trans Isomeric 1,6-Diphenylhexatrienes, J. Am. Chem. Soc. 1954, 76, 2308–2313.

316.Zhao, Y., Truhlar, D.G., Density Functionals with Broad Applicability in Chemistry, Acc. Chem. Res. 2008, 41, 157–167.

317.Borden, W. T., The Partnership between Electronic Structure Calculations and Experiments in the Study of Reactive Intermediates. In Moss, R. A., Platz, M. S., Jones, M. Jr. (eds), Reactive Intermediate Chemistry, John Wiley & Sons, Inc, Hoboken, NJ, 2004, pp. 961–1004.

318.Salem, L., Rowland, C., The Electronic Properties of Diradicals, Angew. Chem. Int. Ed. Engl. 1972, 11, 92–111.

319.Michl, J., Havlas, Z., Spin–Orbit Coupling in Biradicals: Structural Aspects, Pure Appl. Chem. 1997, 69, 785–790.

320.Michl, J., Spin–Orbit Coupling in Biradicals. 1. The 2-Electrons-in-2-Orbitals Model Revisited, J. Am. Chem. Soc. 1996, 118, 3568–3579.

321.Havlas, Z., Michl, J., Prediction of an Inverse Heavy-atom Effect in H C CH2Br: Bromine Substituent as a p Acceptor, J. Am. Chem. Soc. 2002, 124, 5606–5607.

322.Wan, P., Budac, D., Photodecarboxylation of Acids and Lactones. In: Horspool, W. M., Song, P.-S., (eds), CRC Handbook of Organic Photochemistry and Photobiology, CRC Press, Boca Raton, FL, 1995, pp. 384–392.

323.Budac, D., Wan, P., Photodecarboxylation – Mechanism and Synthetic Utility, J. Photochem. Photobiol. A 1992, 67, 135–166.

324.Zimmerman, H. E., Alabugin, I. V., Energy Distribution and Redistribution and Chemical Reactivity. The Generalized Delta Overlap-density Method for Ground State and Electron

486

References

Transfer Reactions: a New Quantitative Counterpart of Electron Pushing, J. Am. Chem. Soc. 2001, 123, 2265–2270.

325.Van Riel, H. C. H. A., Lodder, G., Havinga, E., Photochemical Methoxide Exchange in Some Nitromethoxybenzenes – the Role of the Nitro Group in SN2Ar Reactions, J. Am. Chem. Soc. 1981, 103, 7257–7262.

326.Havinga, E., de Jongh, R. O., Dorst, W., Photochemical Acceleration of the Hydrolysis of Nitrophenyl Phosphates and Nitrophenyl Sulfates, Recl. Trav. Chim. Pays-Bas Belg. 1956, 75, 378–383.

327.Zimmerman, H. E., Sandel, V. R., Mechanistic Organic Photochemistry. II. Solvolytic Photochemical Reactions, J. Am. Chem. Soc. 1963, 85, 915–922.

328.Seiler, P., Wirz, J., Structure and Photochemical Reactivity, Photohydrolysis of Trifluoromethyl-substituted Phenols and Naphthols, Helv. Chim. Acta 1972, 55, 2693–2712.

329.Seiler, P., Wirz, J., Photohydrolysis of Eight Isomeric Trifluoromethylnaphthols, Tetrahedron Lett. 1971, 1683–1686.

330.Pincock, J. A., Photochemistry of Arylmethyl Esters in Nucleophilic Solvents: Radical Pair and Ion Pair Intermediates, Acc. Chem. Res. 1997, 30, 43–49.

331.Dauben, W. G., Salem, L., Turro, N. J., Classification of Photochemical Reactions, Acc. Chem. Res. 1975, 8, 41–54.

332.Ramseier, M., Senn, P., Wirz, J., Photohydration of Benzophenone in Aqueous Acid, J. Phys. Chem. A 2003, 107, 3305–3315.

333.Hou, Y., Wan, P., Formal Intramolecular Photoredox Chemistry of Anthraquinones in Aqueous Solution: Photodeprotection for Alcohols, Aldehydes and Ketones, Photochem. Photobiol. Sci. 2008, 7, 588–596.

334.Hou, Y., Wan, P., A Pentacene Intermediate Via Formal Intramolecular Photoredox of a 6,13Pentacenequinone in Aqueous Solution, Can. J. Chem. 2007, 85, 1023–1032.

335.Basaric, N., Mitchell, D., Wan, P., Substituent Effects in the Intramolecular Photoredox Reactions of Benzophenones in Aqueous Solution, Can. J. Chem. 2007, 85, 561–571.

336.Woodward, R. B., Hoffmann, R., The Conservation of Orbital Symmetry, Angew. Chem. Int. Ed. Engl. 1969, 8, 781–853.

337.Wirz, J., Persy, G., Rommel, E., Murata, I., Nakasuji, K., Photoisomerization Pathways of 8,16- Methano[2.2]metacyclophane-1,9-diene. A Model Case for Adiabatic Electrocyclic Ring Closure in the Excited Singlet State, Helv. Chim. Acta 1984, 67, 305–317.

338.Shaik, S., Is My Chemical Universe Localized or Delocalized? Is There a Future for Chemical Concepts? New J. Chem. 2007, 31, 2015–2028.

339.Steiner, U. E., Magnetic Field Effects in Chemical Kinetics and Related Phenomena, Chem. Rev. 1989, 89, 51–147.

340.Gould, I. R., Ege, D., Moser, J. E., Farid, S., Efficiencies of Photoinduced Electron-transfer Reactions: Role of the Marcus Inverted Region in Return Electron Transfer within Geminate Radical-ion Pairs, J. Am. Chem. Soc. 1990, 112, 4290–4301.

341.Roth, H. D., Return Electron Transfer in Radical Ion Pairs of Triplet Multiplicity, Pure Appl. Chem. 2005, 77, 1075–1085.

342.Knibbe, H., Rehm, D., Weller, A., Thermodynamics of the Formation of Excited EDA (Electron Donor–Acceptor) Complexes, Ber. Bunsen-Ges. Phys. Chem. 1969, 73, 839–845.

343.Rossi, M., Buser, U., Haselbach, E., Multiple Charge-transfer Transitions in Alkylbenzene–TCNE Complexes, Helv. Chim. Acta, 1976, 59, 1039–1053.

344.Rehm, D., Weller, A., Kinetic and Mechanism of Electron Transfer in Fluorescence Quenching in Acetonitrile Ber. Bunsen-Ges. Phys. Chem. 1969, 73, 834–839.

345.Knibbe, H., Rehm, D., Weller, A., Intermediate, Kinetics of Fluorescence Quenching by Electron Transfer, Ber. Bunsen-Ges. Phys. Chem. 1968, 72, 257–263.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]