Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Учебники / 0841558_16EA1_federico_milano_power_system_modelling_and_scripting

.pdf
Скачиваний:
82
Добавлен:
08.06.2015
Размер:
6.72 Mб
Скачать

13.5 Bus Frequency Estimation

311

rth time sampling, the positive sequence of the phasor undergoes the following change:

X¯ r (fn + Δf ) = X¯ e−j(n−1)πΔf Δt sin(nΔf Δt) ej2πrΔf Δt

n sin(Δf Δt)

Thus, the rate of change of the phasor angle is as follows:

dt = 2πΔf

(13.17)

(13.18)

PMU devices can be used for measuring both phasor magnitudes and phase angles. The detailed functioning of these device is rather complex. Furthermore, di erent (and not always clearly documented) technologies are used by di erent manufacturers. However, for transient analysis, the measurement can be approximated as a simple low-pass filter, as follows:

v˙m = (vh − vm)/Tv

(13.19)

˙

(13.20)

θm = (θh − θm)/Tθ

where vm and θm are the measured voltage magnitude and phase, respectively, and Tv and Tθ are the filter time constants.

13.5Bus Frequency Estimation

The estimation of bus frequency deviation described in this section is based on the bus voltage phase angle time derivative. The frequency estimation is obtained by means of a high-pass and a low-pass filter, as depicted in Figure 13.3. The high-pass filter approximates the derivative of the input signal. Di erential equations are as follows:

x˙ θ =

1

 

1

1

(θ − θ0) − xθ

(13.21)

Tf

2πfn

 

Tf

ω˙ = (Δω + ωs − ω)/Tω

where θ0 is the initial phase angle (e.g., the phase angle obtained by the power flow analysis), fn is the nominal frequency in Hz, ωs is the synchronous frequency in pu (e.g., ωs = 1 pu), Tf and Tω are the time constants of the high-pass and of the low-pass filters, respectively, and Δω is defined as:

Δω = −xθ +

1

1

(θ − θ0)

(13.22)

2πfn

 

Tf

312

 

 

 

 

 

 

 

 

 

 

 

 

13

Faults and Protections

θh

+

 

 

 

 

 

 

 

 

 

 

 

 

Δω +

 

 

 

 

 

 

ω

 

 

 

 

1

 

 

 

 

s

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2πfn

 

 

 

1 + sTf

 

 

 

 

 

+

 

 

1 + sTω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

θ0

 

 

 

 

 

 

 

 

ωs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13.3

Bus frequency measurement filter

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13.4 Comparison of rotor speed and bus frequency measurements for the IEEE 14-bus system

Example 13.1 Bus Frequency Measurements for the IEEE 14-Bus System

Figure 13.4 shows the rotor machine speed as well as the bus 1 frequency computed as described above for the IEEE 14-bus system. The disturbance consists in line 2-4 outage for t = 1 s. In the simulation, Tf = 0.1 s is used. The low-pass filter of the bus measurement allows following the trend of the rotor speed but removes swing oscillations. As expected, the smaller Tω, the more accurate the measurement output.

Chapter 14

Loads

This chapter describes static and dynamic nonlinear loads. Since traditional loads used in power flow and transient analysis are constant PQ and shunt admittances, the loads described in this chapter are also called non-conforming loads. These are the voltage dependent load (Section 14.1), the ZIP load (Section 14.2), the frequency dependent load (Section 14.3), the exponential recovery load (Section 14.5), the thermostatically controlled load (Section 14.6), the Jimma’s load (Section 14.7), and the mixed load (Section 14.8).

Non-conforming loads are generally initialized after the power flow analysis. However, there is no particular di culty in including non-conforming loads in power flow equations. This possibility is taken into account in the following formulation of non-conforming loads. Moreover, according to the notation given in Chapter 9, load powers ph and qh are preceded by a minus because these powers are absorbed from the bus.

14.1Voltage Dependent Load

Voltage Dependent Loads (VDLs) are loads whose powers are monomial functions of the bus voltage magnitude, as follows:

− ph = p0(v/v0)αp

(14.1)

−qh = q0(v/v0)αq

 

where v0 is the initial voltage at the load bus as obtained by the power flow solution. Other parameters are defined in Table 14.1. Equations (14.1) can be directly included in the formulation of power flow equations. However, VDLs are generally initialized after the power flow analysis, and p0 and q0 are computed based on constant PQ load powers pL0 and qL0:

 

p0

=

kp

 

pL0

(14.2)

 

100

 

 

 

 

 

 

q0

=

kq

 

qL0

 

 

100

 

 

 

 

 

 

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 313–324.

 

springerlink.com

c Springer-Verlag Berlin Heidelberg 2010

 

314

14 Loads

Clearly, in this case, a PQ load must be connected to the same bus as the VDL. Equations (14.1) are a simplification of the nonlinear general exponential voltage frequency dependent load described in Section 14.3.

Table 14.1 Voltage dependent load parameters

Variable

Description

Unit

 

 

 

kp or p0

Active power rating

% or pu

kq or q0

Reactive power rating

% or pu

αp

Active power exponent

-

αq

Reactive power exponent

-

In [230], it was recognized that the load characteristic is fundamental to define the PV curves of the system. The standard CPF analysis considers only PQ loads. This assumption is justified by the presence of ULTCs that fix the voltage and thus the power consumption at load buses. However, if the load voltage is not regulated, or if ULTCs saturate, then the load voltage dependency has to be considered. Figure 14.1 compares the voltage dependent load curves with the network curves. Figure 14.1 only shows the active power, but similar curves can be drawn for the reactive power. Depending on the value of αp, the load characteristics may or may not intersect the network PV curves.

Fig. 14.1 Voltage dependent load characteristics versus network PV curves

14.2 ZIP Load

315

Example 14.1 Network PV Curves Considering Load

Characteristics

The standard CPF analysis provides an information about the existence of power flow solutions if considering constant PQ load models. Figure 14.2 shows the e ect of load characteristics for the determination of PV curves for the IEEE 14-bus system. The higher the exponents αp and αq , the higher the maximum loading level.

Fig. 14.2 PV curves using di erence load characteristics for the IEEE 14-bus system

14.2ZIP Load

Polynomial or ZIP loads are loads whose powers are a quadratic expression of the bus voltage:

 

 

 

vh

2

 

 

vh

 

 

− ph = pz0

 

 

2

+ pi0

+ pp0

(14.3)

 

v0

v0

−qh = qz0

vh

 

+ qi0

vh

+ qp0

 

v0

 

v0

 

 

where v0 is the initial voltage at the load bus as obtained by the power flow solution. Other parameters are defined in Table 14.2. If the ZIP load

316

14 Loads

is initialized after the power flow analysis, the parameters in (14.3) can be defined based on the PQ load powers pL0 and qL0:

pz0

=

kpz pL0

,

pi0

=

kpi

 

pL0

,

pp0

=

kpp

pL0;

(14.4)

 

 

 

 

 

 

100

v2

 

 

 

 

 

 

 

 

100 v0

 

 

100

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

qz0

=

kqz

 

qL0

,

qi0

=

kqi

 

qL0

,

qp0

=

kqp

qL0.

 

100

v2

 

 

 

 

 

 

 

 

 

100 v0

 

 

100

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

In this case, a PQ load must be connected at the ZIP load bus.

Table 14.2 ZIP load parameters

Variable

Description

Unit

 

 

 

kpi or pi0

Active current

% or pu

kpp or pp0

Active power

% or pu

kpz or pz0

Conductance

% or pu

kqi or qi0

Reactive current

% or pu

kqp or qp0

Reactive power

% or pu

kqz or qz0

Susceptance

% or pu

14.3Frequency Dependent Load

A generalized exponential voltage frequency dependent load is modeled by the following set of DAE [130]:

x˙ =

Δω

 

 

 

 

 

(14.5)

Tf

 

 

 

 

 

 

 

0 = x +

 

 

 

1

1

(θ − θ0)

− Δω

 

 

 

 

2πfn

Tf

 

 

 

v

 

αp

 

−ph = p0

 

 

αq (1 + Δω)βp

 

v0

 

−qh = q0

 

v

 

 

(1 + Δω)βq

 

 

 

 

 

v0

 

 

where the frequency deviation Δω is approximated by filtering and di erentiating the bus voltage phase angle θ (see Figure 14.3). The parameters p0 and q0 are the initial active and reactive powers, respectively, computed after the power flow solution and based on the PQ load active and reactive powers pL0 and qL0 as defined in (14.2), and v0 and θ0 are the voltage magnitude and phase angle determined by the power flow analysis.

Table 14.3 defines the parameters of the frequency dependent load whereas Table 14.4 depicts some typical exponent values for characteristic loads [25].

14.4 Voltage Dependent Load with Dynamic Tap Changer

317

 

θh

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Δω

 

 

 

 

 

1

 

 

 

 

 

 

s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2πfn

 

 

 

 

1 + sTf

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

θ0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14.3 Measure of frequency deviation

 

 

 

 

 

 

Table 14.3 Frequency dependent load parameters

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable

Description

 

 

 

 

 

 

 

Unit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kp

Active power percentage

 

 

 

 

%

 

 

 

 

 

kq

Reactive power percentage

 

 

%

 

 

 

 

 

Tf

Filter time constant

 

 

 

 

 

 

 

 

s

 

 

 

 

αp

Active power voltage exponent

 

 

 

-

 

 

 

 

 

αq

Reactive power voltage exponent

 

 

 

-

 

 

 

 

 

βp

Active power frequency exponent

 

 

 

-

 

 

 

 

 

βq

Reactive power frequency exponent

 

-

 

 

 

 

 

 

Table 14.4 Typical load exponents [25]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Load

 

 

 

 

 

αp

αq

βp

βq

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Filament lamp

1.6

 

0

0

0

 

 

 

 

 

 

 

Fluorescent lamp

1.2

 

3.0

-0.1

2.8

 

 

 

 

 

 

 

Heater

2.0

 

0

0

0

 

 

 

 

 

 

 

Induction motor (half load)

0.2

 

1.6

1.5

-0.3

 

 

 

 

 

 

Induction motor (full load)

0.1

 

0.6

2.8

1.8

 

 

 

 

 

 

 

Reduction furnace

1.9

 

2.1

-0.5

0

 

 

 

 

 

 

 

Aluminum plant

1.8

 

2.2

-0.3

0.6

 

 

 

 

14.4Voltage Dependent Load with Dynamic Tap Changer

Figure 14.4 depicts a simplified model of voltage dependent load with embedded dynamic tap changer.1 The transformer model consists of an ideal circuit with tap ratio m, hence the voltage on the secondary winding is vs = vh/m. The voltage control is obtained by means of a quasi-integral anti-windup regulator. All constant parameters are defined in Table 14.5.

1A more detailed model can be obtained using an ULTC (see Subsection 11.2.2 of Chapter 11) feeding a voltage dependent load (see Section 14.1).

318

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14 Loads

 

h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mmax

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vh θh

 

 

m : 1

 

 

 

 

 

+

vs

 

 

ph = p0vsαp

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

qh = q0vsαq

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kd + Kis

vref

mmin

Fig. 14.4 Voltage dependent load with dynamic tap changer

Table 14.5 Load with dynamic tap changer parameters

Variable

Description

Unit

 

 

 

Kd

Integral deviation

1/s

Ki

Integral gain

1/s/pu

mmin

Maximum tap ratio

pu/pu

mmax

Minimum tap ratio

pu/pu

vref

Reference voltage

pu

p0

Load active power

pu

q0

Load reactive power

pu

αp

Voltage exponent for the active power

-

αq

Voltage exponent for the reactive power

-

The algebraic equations of the device are:

 

 

 

vh

αp

 

− ph = p0

 

 

(14.6)

 

m

 

 

vh

αq

 

−qh = q0

 

 

m

 

 

and the di erential equation is:

 

m − vref

 

m˙ = −Kdm + Ki

(14.7)

 

 

 

 

 

vh

 

The reference voltage sign is negative due to the characteristic of the stable equilibrium point (see Example 11.3).

If voltage dependent loads with embedded dynamic tap changer are initialized after the power flow analysis, the powers p0 and q0 are computed based on the PQ load powers as in (14.2), and the state variable m and the voltage reference vref are initialized as follows:

14.4 Voltage Dependent Load with Dynamic Tap Changer

319

m0

= v0

(14.8)

vref

= 1 +

Kd

v0

 

 

 

 

 

Ki

 

where v0 is the bus voltage obtained by the power flow solution.

Example 14.2 E ect of Tap Changer Dynamics on Transient Analysis for the IEEE 14-Bus System

Figure 14.5 compares the results of the time domain integration for the IEEE 14-bus system using constant PQ loads, constant impedance loads and voltage dependent loads with embedded dynamic tap changer. Tap changer dependent loads are initialized after the power flow solution and have the following data: αp = αq = 2, Kd = 0 and Ki = 0.1 1/s/pu. When considering tapchanger embedded loads, the response of the system in the first seconds after the disturbance is similar to that of the system with constant impedance load models (see also Example 10.2 of Chapter 10). This is due to the slow response of tap changers. After some seconds, tap changers are able to regulate the voltage magnitude and the bus voltage trajectories approximate those of the system with constant PQ load models.

Fig. 14.5 E ect of tap changer dynamics in transient analysis for the IEEE 14-bus system

320

14 Loads

14.5Exponential Recovery Load

This section describes an exponential recovery load based on the model proposed in [128, 155]. Equations are:

x˙ p = −xp/Tp + ps − pt

(14.9)

−ph = xp/Tp + pt

where ps and pt are the static and transient real power absorptions, which depend on the load voltage:

ps = p0(v/v0)αs

(14.10)

pt = p0

(v/v0)αt

 

Similar equations hold for the reactive power:

 

x˙ q = −xq /Tq + qs − qt

(14.11)

−qh = xq /Tq + qt

 

and:

 

 

qs = q0

(v/v0)βs

(14.12)

qt = q0

(v/v0)βt

 

The power flow solution and the PQ load data are used for determining the values of p0, q0 and v0. In particular, p0 and q0 are determined as in (14.2). A PQ load is required to initialize the exponential recovery load bus. All parameters are defined in Table 14.6.

Table 14.6 Exponential recovery load parameters

Variable

Description

Unit

 

 

 

 

 

 

kp

Active power percentage

%

kq

Reactive power percentage

%

Tp

Active power time constant

s

Tq

Reactive power time constant

s

αs

Static active power exponent

-

αt

Dynamic active power exponent

-

βs

Static reactive power exponent

-

βt

Dynamic reactive power exponent

-